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1 Introduction

1.1 GLM Components

Three components of a GLM The 3 components are:

1. Random component: distribution of y;, i.i.d.

e Response variable y has exponential dispersion family
e > .y, is sufficient statistic

2. Linear predictor: n = X8 with n x p model matrix X and parameters 8

e 2;; is value of explanatory variable z; for observation i
® X = (.’Eil,. . .,(Eip)
o 0 =) Biwij
11 0 Tip
o X =
Tn1 - Tnp

3. Link function: g linking mean to linear predictor; g[E(y)] = n = Xf
9(pi) = Z]‘ Bixij

Canonical link: ¢ s.t. transform u; to natural parameter 6;; then we have concave log-
likelihood, simple likelihood equations, Fisher scoring = Newton-Raphson, etc.

Binary response: logit (6; = logit(u;) = logit(m;))
Count response: log (6; = log(p;))

e Continuous response: identity (6; = p;)
Why GLMs? We can transform data instead. But this requires a transformation that yields simulta-
neously: 1) approximate normality; 2) homoscedasticity. This often conflicts with each other.

For GLMs, two separate choices/degrees of freedom: 1) choice of link function; 2) choice of random
component. Gives freedom to model and fit data well without having to worry about normality or
homoscedasticity.

Finally, GLM models g[E(y;)], so we can say that E(y;) = g~'(x;3), i.e. we have direct inter-
pretability of parameters.

1.2 Quantitative vs. Qualitative Variables
Types of Explanatory Variables In linear predictors, they can be:

e Quantitative: simple linear regression; single term §;x; and single column in X

e Qualitative: ANOVA, odds ratios (binary); if ¢ categories, require ¢ — 1 terms (indicators) in
linear predictor and ¢ — 1 columns in X (i.e. one is baseline)

e Mized: i.e. interaction of quantitative x qualitative; ANCOVA (analysis of covariance due to
interaction term)

e Ordinal: ordered categorical variables can be treated as either quantitative or qualitative



1.3 Model Matrices and Vector Spaces
Matrices Induce Vector Spaces Consider all possible n = X3 for all possible 5. This is:

n=pnX1+- -+ X,

i.e. a linear combination of the columns of X. Thus, 7 lives in the column space of X:

CX)={n:n=Xp} ={Xp: 3R}
This is called the model space of the GLM. Properties:

e Models with matrices X,, X, are equivalent if C'(X,) = C(X,)
e If model a is nested in model b, then C(X,) C C(Xy)

Dimension of C(X) Rank of the model matrix X is equal to number of linearly independent columns,
S0:
dim(C (X)) = rank(X) <p

If equal p, then X has full rank. If not full rank, then dim(N (X)) > 0; i.e. model matrix has
redundancies, or aliasing.

e Extrinsic: When variable (usually quantitative) just happens to be linear combination of the
others (collinearity)

e Intrinsic: Inherent redundancy in matrix, i.e. when one-way ANOVA has both intercept term
(all 1) and all indicators (no baseline)

One-Way ANOVA Used for comparing means across different groups/categories, each group labeled
by an indicator I;. Suppose ¢ groups, i =1,...,¢, and j = 1,...,n; observations in each group.

9[E(yij)] = Bo+ Bi = Bo+ Bilin + - -+ + Belic

Significance test of null hypothesis, Hy : p1 = -+ = p.. Combining terms:

y= (y117"'7y1n17"°7ycl7"'7ycnc)
B: (BO;ﬂla"wﬂc)

This results in the non-identifiable, intrinsically aliased model matrix:

]_n1 1n1 Ce ()n1

1n2 0n2 e 0n2
X = . . .

1,. 0, 1,

c

1.4 Identifiability and Estimability

Identifiability Parameters 8 are identifiable if whenever 8* # 8 = X3* # X[.
Another characterization is Xg* = X8 = (* = . This is equivalent to X being invertible;
columns of X being linearly independent; and X having full rank.

Example: One-Way ANOVA. The model matrix above is not identifiable because: [ =
(Bo, B1y---,8:) and B* = (Bo +d, 1 — d, ..., B. — 3) both yield the same linear predictor, namely
Bo + B;. Thus, we drop the baseline category 1, and get:

1n1 0n1 0n1
x o |t tmo O
1, 0, 1,

c



Thus, our new parameters are 3 = (8o, 52,...,8:) and By = p1 and B; = p; — 1.
Ways to achieve identifiability:

e Drop a parameter: first-category (8; = 0) or last-category baseline (5. = 0)
e Add a constraint: >, n;8; =0or >, ;=0

General Identifiability a3 is identifiable if a’ 3* # 173 = X3* # X (allows for linear combinations
and selecting out subsets of parameters)

Estimability a3 is estimable if 3 coefficients ¢ such that E(cTy) = al3.

Note that the definition implies that all estimable quantities are linear combinations of the means.
If 3 is identifiable, all quantitatives a3 are estimable.



2 Linear Models: Least Squares Theory

Notation: y = (y1,...,yn) and u; = E(y;); p = (41, ..., pn). The covariance matrix is: V = var(y) =
Elly =)y —1)"]

Linear Model: y = X3 and V = ¢?I (i.e. identity link with i.i.d. homoscedastic errors)

y=XB+¢€e~0,0%1
(This additive structure makes no sense for most GLMs, such as logistic, log-linear, etc., but does for

normal linear model and latent variable formulations.)

2.1 Least Squares Fitting

Least Squares How do we get best estimates of parameters B and fitted values o = XB? Use least
squares:

min [y — 4> =min » |y = > Bjai;
i j

Least squares corresponds to maximum likelihood when y; ~ N (u;, 02).

Normal Equations Minimize squared error by differentiating L(8) = >, (yi—ui)? = >iYi—22; Bjwij)*:

oL N
Tﬂj - Z(yl - /’Lz)xu =0

i
= Zyzng = Zﬂzfﬂm
i i

These are normal equations; solving yields estimates B = X~ !ji. Uing matrix algebra:

L(B) =y — XB]*

Use matrix derivatives:

G
a3
T

op

This yields the matrix normal equations:

XTy =XTXp=|p=X"X)"'X"y

Hat Matrix Note that:

p=X(X"

x)™
where we define the hat matrix: H = X(X7X) 71X and is n x n. H projects y onto C(X), the
model space; /i € C(X). Recall that, using 8 = (X7X) ' XTy:

Ty =Hy
E(B) = ﬁ,var(B) =?(XTX)™!
Bivariate Regression Let E(y;) = By + S12;, with x; being a quantitative variable. Then the normal

equations yield:
Zy1*n60+ﬂlzxzazxzyi BOZ$1+512%2
i i

>oi(wi — %) (yi — ¥)
iz —)?

=By =7 b, b =




But we see that the Pearson product-moment correlation is:

r = corr(x,y) = 2~ 7)(y: — 9) =4 Sz

VST SR T

So we see that: Blsa: = 15y, that is a change in s, in x only yields a change in 7 in /i, so we have
regression towards the mean.

Orthogonal Subspaces, Residuals Key results from linear algebra:

e u,v are orthogonal if u’v =0

e Orthogonal complement if W, vector subspace of R, is the set of all v orthogonal to every
uew.

o dim(W) + dim(W+) =n

e Every y € R™ has a unique orthogonal decomposition into y = yw + yw+

C(X)? is the set of all vectors that are orthogonal to all vectors in C(X); since the columns are in
C(X), we must have X7'v = 0, where X; is a column of X. Thus, X7v = 0, so:

C(X)*+ = N(XT)

Now we define the residual: e =y — XB.
From the normal equations, X7 (y — X3) = XTe = 0 so we must have e € N(XT) = C(X)+

2.2 Projections Onto Model Spaces
Projection Matrices A square matrix P is a projection matrix onto vector subspace W iff:
1. yeW=Py=y
2. ye Wt =Py=0
Equivalently, P is project iff:

1. P is symmetric
2. P? =P, ie. P is idempotent
Properties of projection matrices include:
e P projects onto the space spanned by the columns of P, that is C(P)
e vy =yp + ypr uniquely decomposes, so that Py = yp is unique

e Projection matrix onto any subspace W is unique

e If P projects onto W, then I — P projects onto W=, so that y = Py + (I — P)y

Eigenvalues of P are all 0 or 1

rank(P) = trace(P), since the rank of a symmetric matrix is number of nonzero eigenvalues

If {P;} are symmetric matrices such that >, P; = I, then the following are equivalent: 1) P;
are idempotent; 2) P;P; = 0 for all 4, 5; 3) >, rank(P;) =n

Projection Matrices for Linear Model Spaces Let Px be the projection matrix onto C'(X). We
have the following properties:

e If X is full rank, then Px = H
o If X, W are equivalent models, that is C'(X) = C(W), then Px = Py

e When model a is nested in b, i.e. C(X,) C C(X;), then P,P, = P,P, = P, and P, — P,
are projection matrices



Orthogonal Parameters If X; is orthogonal with Xs, then the effects of the reduced model u = 81X,
is the same as the effects of the full model u = £1.2X;1 + B2.1X2. Suppose that X = (X; : Xs).

Then: . "
T _ X‘l X1 O T o Xl y

B B ﬁ B (XTX )—ley
- 5= %)Xty = (1) = (R x0y)

so the parameters are exactly the same as when fitted separately.

Pythagoras’ Theorem for Linear Models Because of orthogonality properties of the projection onto
the model space, we can apply Pythagoras’ theorem:

e Unique least squares fit: ||y — Pxy|| < |ly — z| for all z € C(X)

e True and sample residuals: ||y — pl|? = ||y — al|*> + ||# — p||* (assuming that the model is
correct, i.e. p € C(X))

e Data = fit + residuals (sum of squares): |y||* = ||al|* + ||y — £/

2.3 Linear Model Examples

Null Model E(y;) = 8 (no explanatory variables) Then, the model matrix and projection matrix are:
1
X =1,Px =XX"X)"'x" = ~1,17
n

This yields the fitted values: o = Pxy = g1,

The corresponding sum of squares is: y'y =y’ Pxy+y  (I-Px)y = >, y? = ng*+ > .(vi — 7)?

One-Way Layout The non-identifiable model matrix and generalized inverses are:

1o, 1, - Oy 0O 0 ... 0
x|t O Ol gy |0 MmO
1nc Onc e 1nc 0 O e 1/nC

Alternatively, we can use the first-category baseline constraint:

1,, 0, --- 0,
o e
L. O, - 1.
Either way, we get the projection matrix:
1, 1T 1 0 L 0
Py 0 nslnaln, oo 0
0 0 AT

which yields: i =Pxy = (G1,-- -, 51, Teyr -+ Ye)
The relevant sum of squares decomposition for one-way ANOVA is:
vi; =9+ Wi —9) + (vij — ¥i)

i.e. obs = overall mean + between-groups + within-groups. This corresponds to using the Py and
P x projection matrices for the null model and the one-way layout model, respectively, yielding:

y'y =y [Po+ (Px —Pg)+ (I-Px)ly

c n; C c g
=2 D =g+ D =9+ DD (v — 5’
i=1

i=1 j=1 i=1 j=1



which yields the ANOVA table:

Source  Projection matrix df SS
Mean Py 1 niy?
Groups Px c—1 i (Wi — )?
Error I-Px n—c 3> i (Wi — i)
Total I n dim1 E;Ll Y
Two-Way Layout Suppose we have two facts rather than one (i.e. rows are treatments, columns are
experimental blocks). Let there be i = 1,...,r rows and j = 1,..., ¢ columns. The model is:

E(yij) = Bo + Bi +

with 81 = v = 0 for identifiability. Letting y = (Y11,--»Y1es--«,Yrls---,Yre), the relevant
projections are:

e -+ 1/c -+ 0 - 0

1/6 l/c 0 0 ) Ly, -+ L.,
P'r: : : : . : : : ’szf : . :

0 -+ 0 - 1fc --- 1/c Ly, - L

0 -+ 0 - 1fc -+ 1/c

which project onto separate one-way layouts for the row factor and the column factor separately.
That is:

Poy=(U1y - sU1yeerYerse s Ye)
Py=(G1, s GryesGlye-sGr)
This yields the ANOVA table:

Source Projection matrix df SS

Mean Py 1 rciy?

Rows P. - Py r—1 e (Wi —)?
Columns P.- Py c—1 7351 (F5 — 9)?

Error I-P,-P.+Py (r—1)(c—1) >, Z;:I(yij — Ui — 7 +9)?
Total I n=rc Z:=1 Z;=1 yz‘zj

2.4 Summarizing Variability in Linear Models

We can use the fact that the residual is in the error space to glean information about the error term e.

Estimating Error Variance We assume that the error term has var(e) = 0?1, so we want to estimate
o?. We use the fact that:
E(y"Ay) = trace(AV) + " Ap

where V is the variance of the error term, that is V = ¢2I. Using A = I — Py, we have:

Ely'(I-P,)y] = trace[(I — Px)o?T] + u" (I - Px)u = o’trace(I — Px) = o%(n — p)

T (1 _
~|E {y I PX)Y} — 2
n—p

2 _ Y'I-Px)y _ X,(yi—f)®
So that s* = n,px = o
taken with respect to the dimension of the error space, n — p. s2 is called the error mean square.

is an unbiased estimator for o?; that is, the average error

SSE and SSR We split up the sums of squares in ANOVA fashion, to get:

Z(yz -9’ = Z(ﬂz -9+ Z(Yz — i)?

% A



e Total sum of squares (TSS): >_.(y; — ¢)?, that is the variability in y; after correcting for the
overall mean (i.e. from null model)

e Regression sum of squares (SSR): >_,(@; — #)?, that is the variability in y; explained by the
model

e Error sum of squares (SSE): Y, (y; — fi;)?, that is the variability in y; unexplained by the full
model

For the one-way layout, SSR = 3. n;(y; —y)* = Between-groups SS, whereas SSE = )", Zj(yij —
7:)? = Within-groups SS.

Adding Variables on SSE/SSR When we add more explanatory variables, SSE decreases monoton-
ically while SSR increases monotonically (since we can set new g8, = 0).

Sequential Sums of Squares Consider p explanatory variables z1,...,x,, entered into model 1 at a
time. We get incremental SSR:

SSR(.Tl), SSR($2|IE1), ey SSR(I]CP|Z'1, v ,l‘p_l)

where, say, SSR(z2|z1) = Y., (fti12 — fi;1)? from fitting with both z1, x5 vs. fitting with only zy
(from orthogonal decomposition). Note:

SSR(x1,...,xp) = SSR(x1) + SSR(x2|z1) + - - - + SSR(zp|x1, ..., Tp_1)

Partial Sums of Squares We can consider full conditional SSR of x; given all other x_;:
SSR(z1|ze, ..., xp), SSR(x2|T1, 23, ..., Tp), ..., SSR(zp|T1,...,Tp—-1)
that is, additional variability explained by x; given all other variables are already in the model.
R2
oSSR _TSS—SSE _ ¥,(yi—0)* — ¥,(u: — jin)?
TSS TSS >y —9)?

so R? measures the proportional reduction in error from null model to full model; R? € [0, 1].

R

Multiple Correlation Another way to measure predictive power: sample correlation between y; and

fi;- (Note: fi =7 due to normal equations with intercept term.)
>y — 9) (i — ) _ > — )
VI = — VI 0PV = )

corr(y, fi) =

=|corr(y,ft) =+VR?=R

Adjusted R?> When: 1) n is small; 2) p is large, R? is overoptimistic. Thus, we can use the adjusted
R?:
E/(n— -1
S8 /(n p):]_—n (1_R2)
TSS/(n—1) n—p

adj. R®=1—

2.5 Residuals, Leverage, and Influence

Residuals are in error space = orthogonal to model space = contain information in data not explained
by model = used to investigate model lack of fit.

Plots of Residuals for Model Fit corr(e, i) = 0 due to orthogonality, so we can plot e vs. [i to check
lack of fit (should have slope 0). Possible problems:

1. Heteroscedasticity: “fan-shaped” plot of e vs. fi, i.e. non-constant variance

2. Nonlinearity: “U-shaped” plot; signals higher-order terms neded

Other diagnostic: histogram of residuals should be approximately Normal.



Standardized /Studentized Residuals Recall that:
var(ji) = 0?H, var(e) = o(I — H)

so the residuals are correlated and don’t have variance 1. We want all residuals to have variance

1, so we standardized:
Yi — Hi
sv1— hii

r, =

so that var(r;) = ﬁ(ﬁ(l — hy;) = 1. The studentized residual is obtained by estimating
s with all observations besides i. Standardized residual describes how many estimated standard
deviations e; falls from 0.

Leverage h;; = [H];; is leverage of observation . If h;; &~ 1, then y; has a large influence on ji;.
Properties:

o [i; = Zj hijyj = Dy hiZ
e Since we assume y; are uncorrelated:

Cov(yifis) = Cov | i, Y hijy; | =D hijCov(yi,y;) = hiiCov(ys, yi) = hiio”
J J
and since varjl; = 02h;;, we have:

AN 02hii

corr(y;, f)i) = N

e With p explanatory variables, leverages have mean %

hii

e Larger deviation of x; from Z yields higher leverage

Cook’s Distance To be influential, observation must have: 1) large leverage; 2) large standardized
residual. We can combine measures to get Cook’s distance:

Do g2 hi; _ i—m)? hii
(1 = hy) ps® (1= hi)?
“Adjusting for Other Variables” The effect of z; in a model of 1, ..., z, is the same as: 1) regress-

ing y on x_;; 2) regressing x; on x_;; 3) effect of regressing residuals from (1) on residuals from
(2).

Example. Consider E(y;) = Br.omi1 + B2.1242. 1) Regress E(y;) = Boxio; 2) Regress E(x;1) =
B12252. The normal equations are: 1) >, @i (y; — Bgl‘ig) =0;2) >, mip(xin — Blg.’lﬁig) = 0. Similar
equations for multiple regression. Plugging in and solving yields:

Zi(yi - 52551'2)(%‘1 - BleiZ)
Zi(xil - 312961'2)2

Bl-? =

But this is exactly the effect of regressing residuals from (1), y; — o2z on the residuals from (2),
i1 — P12xs2. From this we also see that plugging into the regression of residuals equation,

B2~1 = BQ - /312612

i.e. the subtracted term represents omitted variable bias from trying to estimate the effect of
without including zs.



2.6 Gauss-Markov Theorem
Why least squares? We've noted a number of good properties, such as:
e The least squares estimate [i is maximally correlated with y

e [t yields nice interpretability in terms of orthogonal subspaces, and orthogonal decomposition in
terms of fitted values and residuals

e It corresponds to maximum likelihood estimation under normality assumption

We add another optimality condition about least squares:

Gauss-Markov Theorem. If E(y) = X3 holds and X has full rank with var(y) = oI, then the
least squares estimator 3 = (XTX)~!1XTy is the best linear unbiased estimator (BLUE) of 3. That is,
for any quantity a’ 3, the estimator aTB has the minimum variance among all estimators that are: 1)
linear in y; 2) unbiased.

If we add normality to y, then the least squares estimator becomes minimum variance unbiased
estimator (MVUE); i.e., the restriction of linearity in y is removed.

2.7 Generalized Least Squares

If y not i.i.d, that is var(y) = 02V with V # I, use GLS. Use spectral decomposition to write V =
QAQT and V1/2 = QA'/2QT for orthogonal Q. Let y* = V~1/2y and X* = V~/2X; then E(y*) =
V12X = X*f and var(y*) = 02V ~—1/2V(V~1/2)T = 521 50 y* satisfies OLS.

Minimize squared error: (y* — X*8)T(y* — X*8) = (y — XB8)TV~!(y — X3) so the normal equations
are: [(X*)TX*]8 = (X*)Ty* = (XTV~1X)s = XTV~ly and therefore:

BGLS _ (XTV71X)71XTV71y

e Unbiased: E(Bars) = (XTVIX)'XTV-1E(y) =3
e Covariance: var(Bgrs) = 02(XTV-1X)~1
e BLUE estimator for §; MVUE and ML under normality

e Hat matrix: H = X(XTV~1X)~!XTV~! not necessarily projection because need not be symmet-
ric (i = XBars = X(XTV1X)1XTV-1ly)

e Generalized projection: if u € C(X), then Hu = u; and if v € C(X)* = NV(XT), then Hv = 0
(since (u,v) =0)

2 _ " =XB' ¢ -X"B) _ (y=)"V ' (y—p)

n—r n—r

e Estimated variance: If rank(X) =7, s

10



3 Normal Linear Models

Normal Linear Model: In addition to ;4 = X and V = var(y) = oI, assume that y; follow Normal
distribution, that is: y ~ N(Xf,0%I), or y = X + € where ¢ ~ N(0, 02I).

3.1 Normal and Related Distributions
Multivariate Normal Denoted y ~ N (u, V); properties include:

e PDF: f(y) = (2m)"/2|V|™ 2 exp [=5(y — )"V y — )]
e x=Ay+b=x~N(Au+b, AVAT)
o Ify= (g;), i.e. partitions, with V = <¥; x;;) then:
yv1 L ye iff V12 =0 (i.e. independence iff uncorrelated)
e As corollary, if V = 21, then y; ~ N (u;,0%) and y; L y; for all 4,

Chi-Squared Denoted X% for p degrees of freedom:

o If y; ~ N(0,1) iid, then Y7 y? ~ x2
e Generally: if y ~ N (i, V) is p-dimensional, then:

(y ="V y —m) ~xp
e Moments: E[x3] = p and var(x3) = 2p
t Distribution Denoted ¢, for p degrees of freedom:

e If 2z~ N(0,1) and z ~ x3, = L z, then:

e Symmetric about 0: E(t,) = 0 and var(t,) = ;%5 (p > 2)
e Converges to N (0,1) as p = oo

e Suppose Y1, ..., yn ~ N (u,0?), sample mean  and sample variance s2. Under null hypothesis
Ho : p= po: ( a2
_ Yo _(n—-1)s 2
z—a/\/ﬁwN(O,l)andx— 2 ~ Xn-1

z Y= Ho

D

and larger values of |t| mean stronger evidence against H

F Distribution Denoted Fj, , for degrees of freedom p, ¢:

° Ifxwxf),ywxﬁ,xJ_y, then:
z/p

~F
ylg 1

o Mean: E(F},q) = ;L5 (for ¢ > 2)
o (t,)* =TIy

11



Noncentral Distributions Used to analyze test statistics when null hypothesis does not hold.

e Chi-Squared: If y; ~ N(u;, 1), then noncentrality parameter A = Y7 p; and Y7 y; ~
X;Q;,,\
Moments are: E(x7 \) =p + X; var(x2 ) = 2(p + 2))
More generally, if p-dimensional y ~ N (u, V), then: y7V=ly ~ XIQL)\ with A = pTV~1y
e t Distribution: If z ~ N'(i, 1), z ~ x2, z L z, then:
z

z/p

~tpu

with degrees of freedom p and noncentrality p (from 2)
Skewed in direction of sign of y; t,,, — N(p,1) as p — oo

e F Distribution: If x ~ x;)\, yr X37 x Ly, then:

z/p
E R
yla P

with mean 1 + % for large q.
Cochran’s Theorem and Normal Quadratic Forms Some preliminary results:

o If y ~ N (i, V) and A is symmetric, then:
yTAy ~ X?x uTAy, = AV is idempotent of rank r
e Letting A =P for y ~ N(p, 0%I), and since y/o ~ N(p/o,1):
y ' Py/o® ~ Xf,;ﬁpp/gz
o Using standardized (y — p)/o, we have the important result:

1
— (¥ — wWIP(y — p) ~ x2 < P is projection matrix of rank
o

which tells us: degrees of freedom = rank of P = dimension of vector space projected to by P

Cochran’s Theorem. Suppose n observations y ~ N(u,c%I) and Py,..., Py are projection
matrices s.t. ), P; =1I. Then:

1. {yTP;y} are independent

2. %yTPiy ~ ng\i, with r; = rank(P;) and \; = %,uTPiu

3.2 Significance Tests for Normal Linear Model

Cochran’s Theorem is useful because it can be applied to prove more or less any significant test result
for normal linear models.

Introduction: One-Way ANOVA E(y;;) = Bo + (i, with baseline constraint. Consider Hy : p1 =
-+ = U, or equivalently Hy : f1 = --- = B.. Under Hy, we have E(y;;) = (o, or the null model.

We use decomposition:
I=Py+ (Px—Po)+(I-Px)

with Px having blocks nil 17 and Py = %17112:. Applying Cochran’s Theorem, Px — Py and

I — Px are both projection matrices and are perpendicular, so:

1 1L~
ﬁyT(PX —Po)y = ) > ni@i = 0)° ~ X
=1

1 1 ~
Y T=Px)y=—5> > (i —5i)* ~ Xn—c

i=1 j=1

12



where A = LT (Px —Po)u = 2 >, ni(p; — 1)? and the quadratic forms are independent. Thus,
we can create an F test:

o 2= )/ (e—1) o
Zz‘ Zj(ym )2/(n—c) c—ln-c,

Under Hy, we have A = 0,df1 = ¢ — 1,dfs = n — ¢, so expected value

n—c

and larger F' values

n—c—2"
are stronger evidence against H.
p-value = P(Fe_1n—¢c > Fobs)
Source df SS Fops
Mean 1 ny?
J — - 1 (Gi—7)°/(c—1
Groups c—1 S (T —9)? EZ’ZHJ ((?ij _2i)é(/¢j(n_)c) ~ Fe 1 n—ca
Error n—c Y, Z? 1(is — 7i)?
Total n iy Z] 1ij

Comparing Nested Models Let simpler model be My with py parameters, projection Pg, and com-
plicated model be M; with p; parameters, projection P;. Decomposition yields I = Py + (P —
Py) + (I — P;) with the sum of squares decomposition:

Y y=y Poy+y (P1 —Po)y +y (I—Py)y

y'(P1—=Po)y =y (I-Po)y —y" (I-P1)y = >,(yi — ftio)* — 2, (i — fiir)* = SSEy — SSE) =
Zz(rall — [1,1‘0)2 = SSR(M1|M0) Slmllarly, yT(I - Pl)y = Zz(yl — [1,1‘1)2 = SSEl I-— P1 has df
n — p; while Py — Pg has df p; — pg. Thus, we have:

_ SSE,—SSE;

*yT(Pl Po)y o2 ™~ Xp1—po,\
1 SSE
Y =Py ="~ i,
with A = Ly (P — Po)u = H*”;%‘IQ which is 0 under Hy. Thus, under Hy:
_ (SSEy — SSEY)/(p1 —po) _ SSR(Mi|Mo)/(p1 — po)
F = = ~ Fp1 —P0,n—P1,A
SSE;/(n—p1) 52 ' ’

where s? is the o2 estimator under M.

Example: All Effects Equal 0. Let M; : E(y;) = Bo+f1zin+- -+ Bp—1%ip—1 and My : E(y;) =
Bo be the null model. Consider Hy : $; = -+ = fp—1 = 0. For My, we have Py = %1n1,Tl and the
SS decomposition is:

y'y =y Poy" +y"(P1 —Po)y +y (I-P1)y
with the same ANOVA table as in the one-way layout.
Non-null Behavior of F Statistic. How large can we expect SSEy — SSE; = ||fi1 — jio||* to be

under non-null? Let p; be true mean under M;, and py be projection of @1 onto My. Then the
numerator has expectation:

Ellfn — fio||* = Ely" (P1—Po)y] = trace[(P1 = Po)o’I] + 1 (P1—Po)u1 = o (p1 —po) + || — po?

A2 _ 2
B [Ilul fiol| ] _ g2 4 I = o]
P1—Po P1—Po
while the denominator has expectation:

Elly — iu|?* = Ely" (1= P1)y] = trace[(I - P1)o”I) + u{ (T = P1)ps = (n — p1)o?
a2
E{ny il ]:Uz
n—pi
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regardless of whether Hj is true.

Power. The power of the F test is defined as:
Power = P(Fy, —py.n—p1.x > Fpy—po,n—p, (0.95))
i.e. the probability that the nocentral F' rv exceeds the F' statistic under the null Hy.

Testing General Linear Hypothesis Hy : AS = 0 for [ X p matrix A; [ independent constraints on
(. Properties include:

e Estimator A3 is BLUE (Gauss-Markov)
AB ~ N[AB, 02 A(XTX) 1AT]
(A3 — )T [p?AXTX) AT (AB — 0) ~ 1
a\T T —1AT7—-1 a
o F= O s ~ Fi oy since SSE/o® ~ X2,

AB = 0 is special case My of full model; let W be matrix s.t. C(W) L C(A); then 8 = W,
so E(y) = X8 = XW~ = X7 for simpler Xo = XW.

Example: Single Parameter Equals 0. For testing Hy : §; = 0,let A = X =(0,0,...,0,1,0,...,0)
in j*" slot. This yields:

o (SSEy—SSE)/1 _ 3?2 »
~ SSE/(n—p)  (SE;? MR

3.3 Confidence Intervals for Normal Linear Models

Confidence intervals yield more information than significance tests because they provide the entire range
of plausible values. We obtain confidence intervals by inverting significance tests.

For Parameter Invert test of Hy : 3; = B,o, yielding test statistic:

B — Bio
p= P10y
SE; P
where SE; = /[s2(XTX)~1];; of estimated covariance matrix of 5. Residuals uncorrelated with /3

since error space/model space, and s? function of residuals, so 3 L s and numerator/denominator
are independent.

100(1 — )% CI has p-value > a, or [t| < ty/2 n—p, SO that:

Bio € Bj * tas2n—p(SE;)

For True Mean To get CI for fitted value (i.e. true mean), note if ji = xof3, then var(ji) = var(xof3) =
o2xo(XTX)"1x!" so that when we standardize,

z = Xof} — %o ~ N(0,1)
o/%o(XTX) " 1xI
L xo8 — xo/3 ~tn,

sv/xo(XTX)1xl

since (n —p)s®/o? ~ xZ_, by Cochran. The resulting CI for p is:

L E X0+ ta/2,n—psy) Xo(XTX)~1xf

Note if xg = x; for some obs 4, then the square root term is just h;;.
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For Future Prediction At given xg, suppose predict future y; y = xo3+¢, € ~ N(0,0?). From fitting,
y = Xof + e where e = y — [i, so that:

var(e) = var(y — 1) = var(y) + var(j1) = o2(1 + xo(XTX) " 'x2)
since y L y1,...,y, used for . Thus:

y—
sv/1+x0(XTX)~1x7

~ t’l’L—p

so the 100(1 — a)% prediction interval is:

yE L ta/g’n,pS\/l + Xo(XTX)_lxg
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4 Generalized Linear Models: Fitting and Inference
Generalized Linear Model: 1) Non-normal y; 2) Non-identity g.

4.1 Exponential Dispersion Family

Properties For y; from EDF:

PDF f(yu iy ¢) - eXp yl : (;7)(9 ) - C(yl7 ¢)i|

0; is natural parameter; ¢ is dispersion parameter

Generally, a(¢) = 1 (natural exponential family); a(¢)¢/w; for weight w; known (i.e. binomial)

w; = E(y;) = b/'(6;) and var(y;) = b"(6;)a(é) (using exp. score = 0 and second partials of
results)

Poisson, Binomial, Normal, Gamma All in EDF:

Yi ,—H;

Poisson: f(y;; ;) = T = exply; log p; — p; — log(y;!)] so we have:
0; = IOg(Ni)’ b(0;) = exp(@i), a(gb) =1
e Binomial: Let n;y; ~ Bin(n;,7;) so y; is sample proportion.
i\ _na . 10; —log(1l — 0; i
fyi;ng,m) = (n”jyl)ﬂ-z zyz(l — ;)Y = exp |::l/ Ogl(/ni exp(0;)) +log ( n )]
where 0; = log[m; /(1 — m;)] = logit(m; and b(6;) = log[1 + exp(6;)], a(¢) = 1/n;

i—pi)® i — s /2 1 2.
27me p[ (920’;) ] = exp [7?’“02“/ filog(27r02)72%2}.

e Normal: f(y;; pi,0?) =

0; = 13, b(0;) = 507, a(¢) = 0

Gamma: f(y;u, k) = %y’“le—ky/“ with E(y) = p and var(y) = pu?/k

1 1
0=——,b(0)=—1log(—0),¢ = —
,LL ? ( ) Og( )’ d) k
Canonical Link g : p; — 0; results in direct relationship 6; = n; = > j Bjzi; (good things: Newton-
Raphson = Fisher scoring, always concave, sufficient statistics = expected values)

4.2 Likelihood Equations and Asymptotics

Sufficient Statistics () = Y .l = >, ylé)az(;:)O) + >, c(yi,¢). When g is canonical link, 0; =
Zj Bjxi;, so when a(¢) is constant, the kernel is:

D v Biwig) =Y 8 viwiy)
i j j i
so the sufficient statistics are ), y;a;; forall j =1,...,p

Likelihood Equations For ML, want al(ﬁ ) =0 for all j; using chain rule:

% _ Ol; 99; Op; On;
B;  00; Ou; On; 9B;

i yi— i Opi oy var(ys) Omi
aeﬁ a(¢> o8, == Tag) s,

Z (yz - Mi)wz'j O —0
- var(y;)  On;

aﬂj Z 66] -

Let D = diag (g‘;?), and V be covariance matrix. Then:

XDV (y —p) =0
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Mean-Variance Relation If y; in EDF, then relation between mean and variance var(y;) = v(u;)
completely determines distribution.

Poisson: v(u;) = u;

Binomial: v(u;) = %:“)

e Normal: v(p;) = 0 (constant)
o Gamma: v(p;) = 5

Asymptotics of Parameter Estimators By ML properties, for large n 3 is: 1) efficient; 2) approxi-
mately Normal. Moreover, covariance matrix of 3 is var(3) = J !, the Fisher information matrix:

7= (- |553])

Using the ML second derivative result,
-2 () == [(35) ()] =t (5)
080k 985 ) \ 0Bk var(y;) \ On;
= —-F = .
[3&651 zl: var(y;) \ On;

so let W = diag (%), then we have: J = XTWX

B~ N[B, (XTWX)™]

Asymptotics of Fitted Values Note that 7j = X3 = var(f)) = Xvar(3)XT = X(XTWX) 'XT. We
want var(fi, and we can use delta method:

h(y) = h(p) = h' () (y — @) = var[h(y)] = [B' ()] *var(y)
T
In the vector vase, var[h(y)] = (%) A% (g%) for the Jacobian (2—;‘) So using D = diag(du;/0n;):
var(f1) ~ DX(XTWX)"'X"D

Model Misspecification Even if we specified wrong distribution for y, as long as we used EDF": B 53
as long as linear predictor and link are correct.

4.3 GLM Parameter Inference: LRT, Wald, Score

In order to: 1) say if a parameter estimate is significantly non-zero; 2) establish confidence intervals for
the true parameters, we need tests of significance. There are three standard methods:

Likelihood-Ratio Test Let Ho : 3; = 0. Then define ly = maxgl(3)|s,=0 and 1 = maxg[(3). Then
as n — 0o:

’ =2(lp — ) ~ X3

This can be extended to multiple parameters 8 = (8o, 81) and Hy : Sp = 0 leads to X\ZBo\ and
general linear hypothesis Hy : A3 = 0 leads to x7 where A adds [ constraints.

Wald Test Recall: SE; ~ /(XTWX) ™! so estimating that using: SEB = /(XTWX)~! where W is
W = M evaluated at 7?2 = Zj Bjxij. To test HO : Bj = Bjo, using SFJ = (SFB)J]

var(yi)

z = Bi —bio 0 N(0,1)
SE;

17



2o xd

For multiple parameters 5 = (8o, 51), testing Hy : By = 0:

22 = pE var(B)]51 Bo ~ Xy,

where [var( f]g, = (XTWX) using only the rows/columns corresponding to fo.

Problems: 1) Useless at boundary; 2) Depends on scale

Score Test Testing Hy : 5 = Bp:

2 _ _[01(8)/0B0)? 2

— ~ X7

~ —E[°1(8)/053)]

where the derivatives are evaluated at 8 = .

Confidence Intervals We again get CI by inverting the test.
e Likelihood-Ratio Test: For Hy : 8 = fo: o € {8 : =2[L(B) — ()] > x3()}
e Wald Test: % < Zqs2 = Po € B + 2,/2(SE)
e Score Test: Depends on likelihood; generally close to Wald interval

When n small or B very non-normal (i.e. Wald and LRT CI differ greatly) then Wald fails, so use
LRT.

Profile Likelihood For multiparameter models, i.e. 8 = (fo,%), best CI is obtained by maximizing
I(B) at each possible value of . That is: 1) plug in Sy into I(3); 2) maximize [(3) over all other 9,

yielding maximum nuisance parameters 1(5g); 3) use the profile log-likelihood function I(5o, ¥ (5o)).
The profile likelihood CI for true By is:

—2[1(Bo,P(Bo)) — (B, )] < xi()

4.4 Deviance and Model Checking/Comparison

For normal linear models, we used Cochran’s Theorem and F' statistics to tell whether model fit well
(nested models). Can’t do that for GLMs, so we use deviance (LRT).

Deviance Compare log-likelihood of model with saturated model; let I(u;y) be log-likelihood in terms
of u = g=1(0), then I(fi;y) is maximum of log-likelihood under model, I(y;y) is log-likelihood
under saturated model (separate parameter for each obs i =y).

Likelihood-ratio statistic: —2[l(f1;y) — l(y;y)] =2, W

Generally, a(¢) = ¢/w;, so then:

Deviance | D(y; i) = 2 Z w;y: (0 — 6) — b(0) + b(H)]

and: —2[l(fy) — l(y;¥)] = D%;’l) (so LRT statistic = scaled deviance)

e Poisson GLM: Using canonical link, §; = log(ji;) and b(6;) = exp(6;), with w; = 1 so:

D(y; i) = 22[% log(yi/fi) — i + fis]

K2

If there is intercept term, likelihood equations yield >, y; = >, fli:

D(y; 1) =2 Z yi log(ys/ f1:)

2 o2 A
e Normal GLM: D(y; ) =2, |yi(yi — fis) — % + ’77} =>(yi — fu)* = SSE
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Maximize likelihood < Minimize deviance

Model Comparison In normal linear models, we used SSE comparisons to compare models. Generalize
to GLMS:

1. Likelihood-Ratio Test: Suppose My nested in My, so (fi1;y) > l(fi0;y). Consider likelihood-
ratio test of Hy : My holds:

=2[l(fw0:y) — l(insy)] = =2[U(A0;y) — Uy; ¥)] + 2[(fsy) — Uysy)] = D(y; fio) — D(y; fu)
if $ = 1, as in Poisson/Binomial, which has deviance form, so:

G*(Mo|M1) = D(y; o) — D(y; fir) = Qsz’[Z/z‘(éu — Boi) — b(Br; + b(Bo)]

G?*(Mo|My) = D(y; fio) — D(y; fi1) ~ Xpy—po
under the null hypothesis (M holds)
Using the fact that deviance ~ LRT statistic so D(y; 1) ~ Xifpl, we have:

[D(Mo) — D(My)]/(p1 — po) ~F
D(Ml)/(n —p1) P1—Ppo,n—p1

2. Score/Pearson Statistics: For GLM with var(y;) = v(u;) and ¢ = 1:

)2
X2 — Z (yzv(ﬂl;z)

This is the generalized Pearson chi-squared statistic; original was X2 = 3 (obs—fitted)?/fitted
which holds when GLM is Poisson (v(ft) = ji). For testing nested My in My:

(fu1i — fuoi)?
XZ(MO‘Ml) = Z W ~ X1211—p0

%

which is quadratic approximation to G(My|M;), the deviance statistic. Often has better
behavior asymptotically.

Asymptotics of Residuals Unlike in LM case where y = fi+(y — i) yielded orthogonal decomposition,
in GLM Case, u = g1 (n) need not constitute vector space, so projections/orthogonality don’t hold.
We suppose that i and residuals are asymptotically uncorrelated. Using W and D as before, we
have: V = var(y) = DW'D, and var(y) =~ var(ji)+var(y—/i) under asymptotic uncorrelatedness.
Thus,

var(y — fi) & V —var(i) ~ DW'D — DX(X"WX)"'X”"D
= var(y — i) ~ DW 21 - W2X(XTWX) ' XTW2)W /2D = V/2[I — Hyy|V1/2

where Hyy = W2X(XTWX) ' XTW/2 is projection matrix (hat matrix) for V=1/2(y — p).

Pearson, Deviance, Standardized Residuals Three kinds of residuals for GLMS:

Yi —
v(fii)
Note that: X2 = >~ e? ~ x? for Poisson and Binomial; for Poisson, e; = (y; — fi;)/v/fui,
whereas for Binomial, e; = (y; — 7;)/+/7:(1 — 7;) /ni.

2. Deviance residual d; = 2w;[y;(0; — 6;) — b(0;) + b(6;)] so that D(y; i) = > di. Then:

1. Pearson residual |¢; =

Deviance residual: | /d; x sign(y; — fi;)

3. Standardized residual: Pearson/deviance residuals have variance < 1 because compare y;
to ji; rather than u;. Using generalized hat matrix Hyy = W1/2X(XTVVX)_1XTW1/2 and
h“‘ = (Hw)”, we have:

ey
Standardized residual: |r; = !

1 —hi;
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4.5 GLM Fitting

Unlike normal equations, likelihood equations are nonlinear in 3, so need iterative schemes.

Newton-Raphson Use quadratic approximations to iterate solution to maximum:

(3 )

2
- (210)
03;08;
where H is the Hessian matrix, or observed information. Let u®, H® be score/Hessian evaluated
at (). Using Taylor:

olB)

~u® L HO (5 30y —
53 ~u+HO(E-50) =0

1(B) = 1(8) + ()T (8 - B) + 2 (8 — O HO(5 - 5O) =

= | gD = g _ (H®)~1y®

Fisher Scoring Uses expected information, not observed information. Recall:

*1(B)
0p;08;

so let 7 be J evaluated at f); 7)) = XTWHW. Equivalently to Newton-Raphson:

j:—E[ }:XTWX

U+ = g L (7®)~1y®

Example: Binomial Parameter. Consider single set of binomial observation, ny ~ Bin(n, )
and consider estimating the maximum parameter 7 (rather than 3, as usual). Then [(7) =

nylogm + (n — ny)log(l — 7) + log (;’y) Thus, the derivatives are: u = 859(:) = :?1_—7:3 and
H:—[%—&—%} :E[H]:ﬁ So we can use:

1. Newton-Raphson: w1 = 7() — (H®)~14(®)  which does do the right thing

-1 .
2. Fisher Scoring: ) =) + | s | 28Ge Ty = 0 4 (y = () = y 50 achieved

in one step.

Fisher Scoring = ITRLS Fisher scoring is equivalent to iteratively reweighted least squares on the
. . t an® t)y on'?

adjusted response, 2; = Y2)jai; 8" + (i — ") 2 = " + (i — ) ey

z = X[ + ¢, with € covariance V, the generalized LS estmator is: § = (XTV~1X)"1XTV !z

The score vector is u = XTDV~!(y — i), and we see that DV~! = WD~! for diagonal V. Thus,
u=X"WD~!(y — p), and the Fisher scoring equations are: J® g+ = 70 g® 1 w® Thus,

For the linear model

;B0 = XTW(t)Xﬂ(t)+xTW(t)(D(t))’l(y—,u(t)) — XTw® [Xﬁ(t)—l-(D(t))*l(y—u(t))] — XTWH4®)
and J® U+ = XTWHOW D) 56 that:

ﬁ(t-i-l) _ (XTw(t)X)—lew(t)z(t)

Equivalence for Canonical Link For canonical link 6; = #;, we have: du;/dn; = b"(6;), so géi_ =
J
P— . P 2 . ;g . . . .
(Wi aé‘q;))xw = 5 /?j dlﬁk = 77;(1;5) (gg}:) which is independent of y;, so:

H=-J

and so Newton-Raphson = Fisher scoring for GLMs with canonical link.
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4.6 Model/Variable Selection

Stepwise Procedures Forward selection vs. backward elimination

Bias-Variance Tradeoff MSE = variance + (bias)? so simpler model has higher bias, but may have
lower variance = lower overall MSE.

AIC Kullback-Leibler divergence: KL[p,pu(Bux)] = E [log <%)} measures distance between

M P M

true distribution p(-) and model fitted distribution pas(-; Bar)
AIC: minimize E[K L(p, par(Bar))] < min E[—Elog(p(y; Bar))] where outer with respect to set
of models, inner with respect to p. I(8as) is biased estimator for E[Elog(pas(y; Sar))] but can be
reduced using number of parameters in M. Thus:

AIC = —2[I(B3) + | M]]

where |M| is the number of parameters in model M.
Predictive Power Two measures of summarizing predictive power (i.e. R? in linear models):

1. corr(y, ft): analog of multiple correlation (but not necessarily non-decreasing with more pa-
rameters)

2. Likelihood Ratio: let [5; be maximized log-likelihood for model M; lg for saturated; Iy for
null model, then:

v — o

ls —lo

€[0,1]
Collinearity Relations among explanatory variables may reduce validity and effects:

var(f;) = 1 —1R? [Ei(xj— x)@}

where R? is R? in predicting z; using z_; and VIF; = ﬁ is variance inflation factor. (So as
3

variables are collinear, R goes up and var(f3;) — c0.)
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5 Binary Models

For binary response, assume n;y; ~ Bin(n;, m;). Two sample sizes: 1) n; is number of Bern trials in
single binomial obs; 2) N is number of binomial obs. Let n = (n4,...,ny) be samples sizes, n = >, n;
overall Bern obs.

Two data types: 1) ungrouped data has n = (1,...,1) and large-sample asymptotics = N — oo; 2)
grouped data has n; > 1 with (usually) categorical variables, same values in a group, and small-dispersion
asymptotics = n; — oo with N constant.

Same estimates B and SE for grouped/ungrouped, but deviance changes (different saturated model).

5.1 Link Functions

Latent Variable Model Threshold model with ungrouped data: 1) 3 unobserved continuous y; s.t.
yi = Zj Bjxi; + €i; 2) €; has mean 0, CDF F; 3) threshold 7 s.t. y; = 0if yf <7 and y; = 1 if
y; > 7. Then:

Plyi=1)=P(y; >7) =P > Bjzij+€&>T
J
=1-P €i§T—Zﬁjl‘ij
J

=1-F T—Zﬁjfﬂij
J

since data doesn’t indicate what 7 is, can take 7 = 0 WLOG, and can use standard F (since
multiply all parameters by constant). Generally F' is symmetric about 0, so F(z) = 1 — F(—z)
and:

Ply;=1)=F (Z 5]'1’1:]') = |F '[Py =1)] = Z/Bjxij
b j=1

so the link function corresponds to inverse CDF for some latent distribution.
Link Functions/Models Possible link functions are:
1. Probit: F'=® so &7 '[P(y; =1)] = > Bizij
2. Logit: F(z) = ﬁ%

3. Log-Log: F(z) = exp[—exp(—(z — a)/b)] (Type I extreme-value distribution) so that:
—log[—log P(y; = 1)] = X, Bjwy;

is logistic distribution, so F~1 = logit and logit[P(y; = 1)] = > Bii

5.2 Logistic Regression: Interpretation

o o Bimy)
Y T+exp(X; Biwij)

IOglt(’/Tz) = Z ﬂjxij
J

Interpreting § Interpretations depending on quantitative/qualitative:

oy . Om exp(32; Bjwij)
[ Quantltatlve xT. dmi; 6]WM

= Bjmj(1 — m;) so that at steepest, m; = 1/2:

omi _ B

8.’E1‘j 4
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e Qualitative z: Let 2 be binary indicator, logit(m;) = By + S1z (2 X 2 contingency table). Then
logit[P(y = 1|z = 1)] — logit[P(y = 1|z = 0)] = 3, so that e’ is odds ratio:
A Ply=1z=1)/[1— Py =1z = 1)]
Py =1]z =0)/[1 = P(y = 1|z = 0)]

If there are multiple variables, odds of P(y = 1) multiply by e’ for unit increase in x;:
o~ Ply=1a;=ut1)/[1 - Py =1|z; =u+1)]
Py =1]z; = u)/[l = P(y = 1|z; = u)]
Case-Control Studies Retrospective studies fine for logistic regression since:
Ao Py=1r=1)/Ply=0r=1) Plz=1y=1)/Plz=0ly=1)

Ply=1z=0)/P(y=0/z=0) P(z=1y=0)/P(z =0z =0)
i.e. we can reverse response/explanatory and still get odds ratio interpretation.
Predictive Power Two main ways to summarize predictive power:

1. Classification table: cross-classify y with prediction gy; i.e. use y; = 1 if 1; > mp and g; = 0

otherwise (i.e. pig = 0.5, mop = ). Then:
sensitivity = P(y = 1]y = 1) and specificity = P(g = 0|y = 0)

but depends strongly on cutoff mg.

2. ROC curve: Let tpr = sensitivity and fpr = 1 — specificity.
ROC curve = plot tpr (y) as function of fpr (x); generally concave
If pig =~ 1 then tpr = fpr = 0; If my =~ 0 then tpr = fpr = 1.
Concordance index = area under ROC curve = proportion of all pairs (¢,7) such that y; =
1,y; =0 and 7; > 71;.

3. Correlation measure: corr(y, /i) is useless because y is 0 or 1. Better measure is corr(y*, fi),
Le. y"=p+eand o=, B

5.3 Logistic Regression: Inference

Use likelihood equations and Newton-Raphson/Fisher Scoring, like other GLMs:
N N
i — fli)Tij O ni(Yi — Ti)4j
Z(y u)Ju:Z (y )af(m)zo
—~ var(y) On o omi(l-m)
since p; = F'(n;) for CDF F resulting in PDF f. In terms of 5:
Y ni(yi — F(X, Biaag))wig [ Biwig)
—~  FQC;Bxi)[l - F(2; Bjzij)]

Likelihood Equations For logistic regression: F'(z) = 1_?%, f(2)

= W = F(2)[1 — F(2)] so:

N
an(yz — 7'('1‘)1'1']' = 0
i=1

and if X is the IV x p model matrix, with totals s; = n;y;, then:
XTs = XTE(s)
i.e. as with all canonical link: sufficient statistic = expected value.

Asymptotic Covariance Matrix of Estimators 7 = X" WX, and w; = % = nymi(1 — m;)

so the estimated covariance matrix for large samples is:

var(f) = (X"WX) ™ = (X" diag[n;#; (1 — #;)]X) !

Wald is Suboptimal 1) Scale-dependent; 2) Aberrant behavior when effect is large.

For null model logit(7) = By, and Hy : By = 0, then on totals scale, 22 = logit(y)%[ny(1 — y)] while
(y=0.5)

ya—y)/n which are different.

on proportion scale, 22 =
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Fisher Exact Test Used when n is small relative to p; eliminate nuisance parameters by conditioning on
their sufficient statistics. Consider logistic regression with single binary x and small NV, ungrouped:
logit[P(y; = 1)] = Bo + S1z;. Interested in B1; By is nuisance.
Kernel of log-likelihood is: Y, 6 = >, vi(Bo+ Bixi) = Bo Y, ¥i +B1 Y_; Tiyi s0 ., y; is sufficient
for By, and ), x;y; for Bi. To eliminate Sy, consider ), z;y; = s1 while conditioning on ), y; =
S0 + 81 where sg is binomial success totals when x = 0 (ng)and s; is total for x =1 (ny).

under Hy and consider:

. Bo
Consider Hy: 81 =0 g =my. Let 7 = ﬁw

P(s1 =t,s0 =u) = <T;0)7rt(1 — )ro—t (::1>7r“(1 —m)m

ng +n1

P(so+s1=11):< y

)ﬂ'v(l _ ﬂ,)no+n17v
(%) ()
(n0+"1)

v

:>P(81:t|$0+51:1)):

which is independent of By. To test Hy : 1 =0 vs. H, : 81 > 0, we use: P(s1 > t|s1 + so) where ¢
is observed s; value.

Limited: we need sufficient statistics for nuisance parameters; only exist for canonical link GLMs.

5.4 Logistic Regression: Fitting

Iterative Fitting Since logit is canonical, Newton-Raphson = Fisher scoring. We can express deriva-
tives as:

ug»t) = Z(S’ - ’I”Liﬂ'gt))l‘ij =ul) =XT(s — M)
M) = = wjzanir? (1 - 1Y) = HO = —XTdiaglnr"” (1 — 7{”)]X

® _ _exp(S; 8 0) ) _ (0
where T,/ = WM, ;= mn;m,;  so that the update is:

-1
B = 50 4 (XTdingln,nl? (1 - w)X) T XT(s - 2)

Infinite Estimates Fitting runs into problems when complete separation or quasi-complete separation
occurs. Quick example: y =1 at z = 1,2,3 and y = 0 and = = 4,5,6; then Sy = —3.58; and
p1 = oo.
Signs: 1) very large standard errors (since log-likelihood is near-flat); 2) perfect prediction (7; = 1
if y; = 1 and vice versa); 3) maximized log-likelihood is basically 0.

Quasi-complete separation when cases exist with both outcomes on hyperplane; still infinite esti-
mate, but log-likelihood < 0. (Often happens when y; = 1 or 0 for every obs with certain value of
categorical variable)

We can still do: 1) LRT of 81 =0 vs. Bl = oo comparing log-likelihoods at these values; 2) invert
test to get confidence interval, i.e. (L,00) where Hy : 81 = L has p-value .

5.5 Deviance and Model Comparison/Checking

1) LRT to check more complex model is better (if not, current model is probably fine); 2) Global
goodness-of-fit tests (Pearson chi-squared or deviance)

Deviance For grouped data, saturated model has #; = y; (sample proportion), so LRT statistic com-
paring model to saturated is:

=2 > (nays log(fi) + (ns — maya) log(1 = 7)) = > (nays log(ys) + (ns — nays) log(1 — ;)

3 K3
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zyz — Y obs 2
=2 E 1 2 E )log —————=— =2 E 1
G y N niY; Og + nzyz Og n; nm obs x 0g (ﬁtt d) Xpr

Pearson Statistic X% =",y .. (obs—fitted)” _ = (niyi—nii)® | ) [(ni—niys)—(ni—n; )]

fitted nf; ni—n;w;
N ~ N2
Yi — i) 2
P o
=1 m(lfﬂi)/ni N-p

Again, X? is a quadratic approximation of G2, and | X2 — G2?| & 0 under Hy. But X2 converges
to X?V—p faster than G2, so provides more reliable estimates when small success/failures.

Also, chi-squared under Hy only for grouped data!! Even for grouped data, if N is big with n;
small, then not really chi-squared.

However, even if ungrouped, we can still use G*(My|My) = D(My) — D(My) ~ x2, _,, under
H[) : MO holds.

Residuals Use Deviance/Pearson statistic (global goodness-of-fit) or LRT /deviance comparison (model
comparison) to select a model; then use residuals to determine microscopic fits.

1. Pearson residual: e; = ——24=Ti___
\/ﬂ'i(l*ﬂ'i)/’ni

so that X2 =3, €?

2. Deviance residual: d; = \/ {myl log (::fr:) + (n; — nyy;) log (%)} x sign(e;)
so that D(y; i) = Y, d?
3. Standardized residual: r; = vifi ~ N(0,1) if model holds
\/ﬁi(l—ﬁi)(l—hii)/ni
where hi; = (Hy )y for Hy = WI2X(XTWX)1XTW1/2 and W = n;#;(1 — 7;)

5.6 Probit and Log-Log Models

Probit Models ®~!(m;) = >_;Bjzij and m; = @ (ZJ ﬁjwij)

68;”1 = Bjo(>2; Bjwij) so at max, 0, rate of increase is 0.4 - f;
(compare to 0.25 - 3, for logistic)

e Interpreting parameters:

e Logistic comparison: ML parameter estimates in logistic are 1.8 times estimates in probit
(because standard deviation of logistic is pi/v/3 times probit)

e Predictive power: Use ROC curve and corr(y*, i) as in logistic

e Fitting: Use likelihood equations with @, ¢ and iterative (Newton-Raphson # Fisher scoring)

e oA A — (XTI —1 Ao mig(n)?
e Asymptotics: var(f) = (X* WX)~! where w; = IR IO

Log-Log/Complementary Log-Log Models Both probit and logistic are symmetric response distri-
butions (logit(m;) = —logit(1 — m;)). Log-log/complementary log-log useful when response for 7; is
not symmetric.

1. Log-Log Model 7; = exp[—exp(}_; Bjzij)] or —log[—log(m)] = 3_; B
Approaches 0 sharply; approaches 1 slowly

2. Complementary Log-Log Model

m; = 1 — exp[—exp(}_; Bjzi;)] or log[—log(l —m;)] = >_, Bjzi;
Approaches 0 slowly; approaches 1 sharply
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6 Multinomial Models

Binomial = two categories. Multinomial = ¢ categories. Can be either nominal (no natural category
ordering) or ordinal (categories ordered).

mij = P(yi = j) = P(yiy = 1) st 235_, mij = 1 yi = (Y1, -+ Yie) st 25 yij = 1. Finally,

—_ Yi1 Yic
p(yi17 v 7yic) - 7T'L'1L U ﬂ-icb

6.1 Nominal Response: Baseline-Category Logit

Baseline-Category Logits Need to consider all categories exchangeably, so: 1) pick a baseline cate-
gory, i.e. ¢; 2) form logits of every other category w.r.t ¢ (i.e. conditional probability of being in
category j given in category j or ¢). Basically treat each j, ¢ pair as binary model.

Baseline logits: log T2, .. ., log ==X where the j'" category logit is:
Tij P(yi; =1lyi; =1 or yic = 1) :
log M _ J j = logit [P(yi; = 1lys; =1 or y;e = 1
o8 T8 T gy —Tor g = 1) % [P(yij = 1yi; =L ory )]
letting x; = (41, ...,%;p) be explanatory variable values for subject i and 8; = (8;1,...,08;p) be

parameters for j** baseline logit (i.e. exp. var. by subject, parameters by logit equation):

r
71'1']'
log — =x;3; = E BikTik
Tic 1

simultaneously describes effects of x; on all ¢c—1 baseline logits; effects vary according to j category.
Also, determines effects on all other logits, since:

T, T T
log — = log 2 —log —* = i(B; — f)

k Te c

Nominal: if all outcome category labels are permuted, and parameters permuted according, then
model still holds!

Multivariate GLM Generalizing GLM to multivariate response: g(u;) = X; where g is multivari-
ate; X, is model matrix (generally x; repeated |g| times, but can differ for each g;). y; is from
multivariate EDF:

T
yi 0: — b(6;)
f Y’L7917¢ = exp I: +c Yl7¢
(3101, 6) L elyin)
Multinomial € Multivariate EDF: y; = (yi1,...,Yic—1) since yie = 1 — (y1 + -+ + Yic—1) SO
redundant; p; = (ti1,- - -, fti,c—1) and we can express baseline logit model as:
x, 0 - 0\ [ B
- 0 x; -~ O Ba
Hij v
i(pi) = lo , X = . . . .
() & 1_(Mi1+"'+,ui,c—1)} P : T :
o 0 - x Be—1

where each 5; = (Bj1,...,8jp)
Multinomial likelihood is: Z;;} yij logmij + (1 — Z;;} yz-j) log e = Z;;} log WJ + log e

s

so 0; = log T baseline logit is the natural parameter and canonical link!
Fitting Important formulas:
o exp(xif;)
ij = —
1+ Zizll exp(x;Bk)
1
Tic = c—1
1+ exp(xifk)

with 8. = 0 for identifiability (also exp(0) = 1, as needed).
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The likelihood equations are:

c—1
1(B;y) = log H Hwy“ Z Zym xiBj) —log | 1+ Y exp(xif;)
1=1 = =1 | j=1 j=1
c—1 P N N c—1
=y lz Bik (Z fEikyij)] — log |1+ exp(xif;)
j=1 Lk= = i=1 j=1

so sufficient statistics are ), x;5y;;. Taking derivatives:

ol(B;
85],:, szk}yu Z

i=1

Ti eXp( xif3;)
Tik yu 7717 =0
1+ Zl exp( zﬁl ] ;

N N
= E TikYij = E Tik T
i=1 i=1

so sufficient statistic = expected value, as in all canonical link.

Differentiating the log-likelihood again, we have:

OUB:Y) o1(8:y)
0B;k0Bjw lekxlk/w” ~ i), ABx0BJ K gml”*’%%

_PU(By)
= (j)jvj/ - 86786/ ZleJ .7 - ] 7(1] ]X X5

where each are blocks of size p x p, and there are (c — 1)? of them. We also have: B~ N(B, T

Deviance and Inference After fitting, need to do: 1) significance tests for parameters; 2) confidence
intervals; 3) model comparisons. We can use LRT, Wald, or score for significance tests: i.e.
Hy = fix = Par, = - - - = Be—1,x = 0 can be done using LRT with maximized likelihood with/without
variable xy; has x2_; distribution.

Deviance/Pearson Statistic: For grouped data, let y;; = proportion of observations in setting
i in category j, then multinomial likelihood is: [, I]; WZy7 and deviance compares log-likelihood
at model fit 7;; and at saturated 7;; = y;; resulting in:

zyz obs
=2 Z Z n;Yij 1og L =92 Zobs x log —— Ftted X%pr)(cfl)
=1 j=1

nzyw - nzﬂ'”) . (ObS — ﬁtted)2 9
Z Z = T ftted  X(N-p)(e-1)

n;;
=1 j=1 iMtij

where df = N(c—1)—p(c—1) = (N —p)(c—1) because that’s number of multinomial probabilities
modeled minus number of parameters (5. = 0). (i.e. N = number of combinations of explanatory
variable values.)

6.2 Ordinal Response: Cumulative Logit
If categories are ordered, use cumulative logits; generally fewer parameters, so model parsimony!

Cumulative Logit Models Now let y; = j represent subject 4 falling into category j; equivalent to
y;; = 1. Consider cumulative probabilities P(y; < j) = mi1 + - - - + mi;.
. . . . i1t
Cumulative logits: logit[P(y; < j)] = log %
Cumulative logit model: Consider being in categories 1, ..., j as “success”, categories j+1,..., ¢
as “failure”. Then:

llogit[P(yi < =a;+x8 ‘
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where each cumulative logit has different intercept but same slope; «; increasing in j (i.e. same
shape logit curves, do not cross). Ordinal because if arbitrary permutation of labels, then model
need not hold!

Proportional odds structure: Note that:
P(y; < jlxi =u)/P(y; > jlx; =u)

log - -
Py < jlxi = v)/P(yi > jlxi = V)

— logit[P(y; < jlx; = w)]~logit[P(y; < jlx; = V)] = (u-v)3

so cumulative odds ratio (odds ratio of cumulative probabilities at different values of x;) is propor-
tional to e("~Y)8_ Every unit increase in z;;, results in odds of y; < j multiplying by e’*.

Latent Variable Motivation Motivate common effect 3: suppose linear y; s.t. y' = x;8 + ¢; and
€ ~ G(), le. p; =x0 and y; ~ G(y; — p;). Cutpoints —o0o = ag < a1 < --+ < a, = 00 so that
y; = j iff aj_1 < y; < ;. Then: P(y; < j) = Py < ;) = G(aj — x;3), so the link function is
G~ and G [P(y; < j)] = a; — x;8. (Note: — instead of + here: if B; > 0 and as z;;, increases,
each P(y; < j) decreases, so less probability of being at low end of scale, so y; tends to be larger
at higher values of x;.) Same effects 8 regardless of selection of cutpoints!

Cumulative Link Models G~![P(y; < j)] = a; + x;8. Effects are same for each cumulative proba-
bility; G is CDF of error term.

Cumulative probit if G = ® for standard normal; again effects m/1/3 times bigger in logit model.
1-unit increase in x;;, corresponds to §j increase in E(y)).

Predictive Power Use corr(y*,y*), that is:

5 var(

2 %Corr(y*,y*) _ ) _ Var(y )

Y
var(y*)  var(g*) + var(e)

where var(e) = 1 for probit, 7/+/3 for logit.

Fitting Consider again multicategory indicator y; = (y;1, . - ., ¥ic) and cumulative link model G~1[P(y; <
J)] = a; +x;8. The likelihood is:

N ¢
= l(a, ) = Z Zyij log[G(a; +x;8) — G(aj—1 + x;0)]

i=1 j=1

Then the likelihood equations are (with g being PDF of G):

Zzwa’%k (o +xiB) —glaj1 +x:B) _

(%k = aj +xi3) — G(aj_1 + x;3)

1y, jk?g<aj +Xzﬁ> j l,lcg(ajfl +Xi6> N
ZZ G(ay +xi8) — G(aj—1 + 2:8) =0

60zk

Model Checking Cumulative logit/proportional odds assumes: 1) location varies (i.e. «; differs by
7); 2) constant variability (8 constant). This results in stochastic ordering: P(y; < jlx; = u) <
P(y; < jlx; =v) or P(y; <jlx; =u) > P(y; < j|x; = v) for all j! (If this is violated, cumulative
logits might not fit well.)
Score test: Can check if separate effects §; fit better than common 3 by using score test Hy : 51 =
- = . = B (since score test only uses log-likelihood at Hy, i.e. common effects, so no problems
with fitting with 5;.)

Using OLS for Ordinal Problems: 1) No clear-cut choice for category to numerical score; 2) Ordinal
outcome is consistent with [a;_1, ;] interval of response; OLS doesn’t consider this error; 3) OLS
does not yield estimated prob. for each category given z;; 4) Non-constant variability due to
floor /ceiling effects violates OLS; 5) Floor/ceiling effects can yield spurious interactions effects.
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7 Count Models

7.1 Poisson Loglinear Model

Poisson Distribution Properties include:

o PMF: p(y; p1) = 25

y!
e Moments: E(y;) = p, var(y;) = p, and skew(y;) = 1//i, with mode(y;) = |

We have two ways of fitting count data assuming y; ~ Pois(p;).

1. Variance Stabilization + OLS: Since Poisson has non-constant variance, we can transform
y; so transformed values have constant variance. By delta method, var[g(y)] ~ [¢'(u)]?var(y)

2

so using g(y) = /y: var(\/y) = (ﬁ) p= %!

So fit E(,/y) = X3 using OLS. But: 1) effects hard to interpret; 2) other transforms might
fit linear predictor better (i.e. log(y;) or y; itself).

2. Poisson Loglinear GLM: Using log p; = Zj B;xi;, model is:

p
log pt; = Y _ Bjwi; or logp = Xp
j=1

The likelihood equations become: Y, x;;(y; — pi) =0

Exponential relation: | p; = (€)% ... (%)% | i.e. 1-unit increase in x;; multiples ; by e

Model Fitting As usual, Newton-Raphson = Fisher Scoring for canonical log link; and asymptoti-
cally/estimated covariance of 3 is: var(g8) = (XTWX)~! with w; = y;.

Model Checking/Comparison Again, we use global goodness-of-fits: Deviance or Pearson
Deviance: D(y; 1) =25, [yi log (%) —yi + ﬂi] but if there is intercept term, then by likelihood
equations, Y . y; = >, fli, SO

G? = D(y; i) = 2 g [yl log (zi)}

)2
Pearson Statistic: | X2 = Z M
i—1 Hi

Both statistics are X72’7,7p when n is fixed and p; grows unboundedly (i.e. contingency tables with
fixed cells and sample size within each cell growing).

But neither reveals how the model fails. Better to compare (i.e. LRT/Deviance comparison) with
more complex model, i.e. Poisson C Negative binomial.

Residuals For Poisson GLM:

e Pearson residual: ¢; = Y-
¢ A
e Deviance residual: components of deviance d; as usual
e Standardized residual: r; = 2=
vV fi(L=hi;)

Also: compare observed counts to fitted counts; generally too low for 0 and high outcomes
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Example: One-Way Layout Suppose y;; is count variable in one-way layout of obs j in group 4,

i=1,...,cand j =1,...,n;, n =), n;. Let y;; ~ Pois(u;;); model common means in groups,
log(i5) = Bi (Bo = 0 for identifiability). Then log p = X/ with:
1l 1,, 0, -+ O 51
T el T R
pela, 0. 0. - 1) \4

Likelihood equations for g; are: Z?Zl(y” — f1;) = 0 so that fi; = g; = B; = log ;.

Since w;; = ji; = ¥;, we have: vér(ﬁ) = (XTWX) = diag (n 7 ) so f3; are uncorrelated and since

’;Th = exp(Br — Bi), var(Bn, — B;) = var(Bp) + var(;) and the 100(1 — )% CI for the ratio of means:

N . 1 1
Bh ¢ exp [(/5% — Bi) £ 2a/2 — + — }
i NhYn n;Y;

Hy : gy = -+ = pc by using Deviance comparison/LRT, which equals: 237, n;¥; log (%) X2,

Global GOF tests: G* =237, >0 yi;log (%ﬂ) and X% =370 >0 % 22 (ma—1)

7.2 Contingency Tables: Poisson = Multinomial

Independent Poisson counts in cells = multinomial models once conditioned on total sample size. Explore
independence/association/interaction structure by specifying models with interaction terms (vs. not).

Poisson = Multinomial Independent Poisson (yi,...,¥c), means (u1,...,He); total n = > y; ~
Pois(zj ;). Then conditional probability of (yi,...,y.) given n is:

(& (&
P(ylznla---ayc:nc) n!
Plyt=n1,-..,Ye =n¢| Y y;=n| = = 0
el 2 PSS, 0 =) mt ) 17

where 7; = < i.e. multinomial with n, pi;.
Zi M

Example: Two-Way Contingency Table Two categorical variables, A and B, r X c table; y;; with
A =i, B = j. Model: pj = pdivp; st. >, ¢y = Zj 1; = 1. Then, log model is additive:
log p1ij = Bo + B;* + BF (main effects, no interaction; identifiability requires first-category baseline)

Multinomial: Conditionalon 3, >, y;; = n, we have -, > pij = p, 80 w35 = pij/pn = ¢y, and

since ), ¢; = 1, Zj 1; = 1, we must have ¢; = m;; and ¢; = m4;. Thus: ’ {mij = mipm4j} ‘ and so

category responses in A vs. B are independent! (i.e. P(A=1i,B = j) = P(A=1)P(B =j))
Poisson: Consider 2 x 2 table, 5i' = £ = 0 for identifiability, then:

10g,u11 1 0 0 ﬂo

| logpiz | |1 0 1 A
8 Ntogpa | T X7 01 o {0y
log 1122 1 1 1 2

Deriving the likelihood equations, with log ;; = 8o + BA + ﬁB, we have log-likelihood kernel:

Zzyw log( Uzj ZZIJ’U = nﬁO‘i‘ZyH—ﬁ +Zy+]6 ZZeXp(BO +/8{4+Bj3)

i=1j=1 i=1 j=1 i=1 j=1

or - A By _ o _ ,
§A = Ui+ ;exp(ﬁo+6i+ﬁj)—yz+ it + ggB = Uhi ~Hes

(3

So ML fitted values are: {ﬂu = M} (equivalent to multinomial: ;4 = y;4/n, T1; = y4;/n)
n

Parameters: Multinomial has (r — 1) 4+ (¢ — 1), while Poisson has 1 + (r — 1) + (¢ — 1).
Pearson Statistic: X* =31, >0, %7“7)2 ~ X{r_1)(e_1y (since (re=1) = (r = 1) = (c = 1))

ij
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Example: Adding Interaction Term Suppose log 11;; = o + 8 + B]B + 'yfj‘-B, interaction term 'y;;‘-B;
model matrix has cross-products of r — 1 row indicators and ¢ — 1 column indicators. (i.e. yf‘jB =
4B = 0, so for first column/row, we just have By + B or By + BJB; yields 1+ (r — 1)+ (c—1) +
(r—1)(e¢ = 1) = re, so model is now saturated)

Interpretation: odds ratios. For r = ¢ = 2, the log odds ratio is:

lo 7711/7T21 —1o 11 22
T12/T22 H12H421

_ _AB | _AB __AB __AB _ _AB
=71 tY22 T2 T Y21 = V22

so €722 is odds ratio between being in A =1 vsA =2 given in B =1 over B = 2.

General Interactions for Multiway Tables Consider three-way table, A, B, C, with r x ¢ x [ cells;
independent cell counts {y;;,} or multinomial cell prob. {m;x} with >, > 7 > ) mi = 1.

1. Mutual independence: ’P(A =1,B=jC=k)=PA=i)P(B=j)P(C=k)| that is

Tijk = Tit+T4j+T4+k OF log wijr = Bo + 5{4 + 5]5 + ﬁg (independence = additive)

2. Joint independence: ]P(A —i,B=4,C=k) =PA=14)P(B=jC=k) \: A is jointly
independent of B,C. That is, mjr = Ti44+ 74k or log pijx = Bo + B;f‘ + ﬁJB + ﬁg + 'yﬁfj

3. Conditional independence: | P(A =i, B = j|C = k) = P(A = i|C = k)P(B = j|C = k) |then
A, B are conditionally independent given C (i.e. consider separate two-way tables between
A, B for each value of C; then in each two-way table, A, B are independent.)

Then mijp = ZEHE and log pijk = Bo + B + BF + B +v4E +5C

Ttk

4. Homogenous association: All pairs can be conditionally dependent:
log pijk = Bo + B + B + Br + 45" + " + v

Similar interpretation as interaction term in two-way model: consider fixed C' = k, then

conditional association between A, B is specified by odds ratios: 6;;) = % ie. to
ick thr

baseline categories r,c. Then the log odds for r = ¢ = 2 are: logfy () = log% =

VB + 782 — {4 — 4B = 4448 so that 6,1y = - = 6,5 for every i, j (without three-factor

term) = homogeneous association.

Fitting in Contingency Tables Generally likelihood equations equate observed counts = fitted values
for the highest-order terms, i.e.:

1) Mutual independence: Y+ = flis+,Y+j+ = flyjt Y4+k = flttk
2) Homogenous association: yij+ = flij+, Yitk = flith Y+jk = fltjk

Loglinear < Logistic Models Loglinear = symmetric category classifications, model joint distribu-
tion of categorical variables; Logistic = distinguish response vs. explanatory classifications.

Consider homogeneous association model, with A as response, B, C' as explanatory; i.e. condition
on n4 i for each combination of B, C values, so ¢ x [ logits. Let r = 2, then:

PA=1B=jC=k) _ Hik

1
BPA=2B=5C=k " °

= log pi1jr—log pizji = (B7 —B3)+(1157 =757 )+ (i —v4C)

= logit[P(A=1|B=4,C =k)] = A+ 6] +5f
Same thing can be done if r > 2 using baseline-logits for A in terms of B,C,... So note that the
log-odds ratio at, say, different values of B are:
P(A=1B=u,C=k)/P(A=2|B=u,C=k)
P(A=1B=v,C=k)/P(A=2|B=v,C—k)

log =08 B

so the interaction terms are exactly the log-odds ratios, as in loglinear case.
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7.3 Negative Binomial GLMs

Overdispersion: Poisson has variance = mean; but count data often has variance > mean, often due
to heterogeneity (mixture of Poisson; not all explanatory variables in model)

Negative Binomial = Gamma Mixture of Poisson
y|A ~ Pois(\)
A ~ Gamma(pu, k)

Then E(\) = p, var(A\) = %2, S0 2that E(y) = E[E(y|\)] = p and var(y) = FElvar(y|\)] +
var[E(y|\)] = E(\) +var(A) = p+ 5= > p.

Marginal y over Gamma mixture yields Negative Binomial:

. _ _T(y+k) vk \F
* PDE: p(y’“”“)—m(ﬁ> (%)

e Natural parameter: 6; = log —£

e
e Dispersion parameter: v = 1/k (NBin — Pois as v — 0)

e Moments: E(y) = p, var(y) = p + yu?

Negative Binomial GLMs Use log link rather than canonical (natural parameter above); treat 7 as
constant for all ¢ but unknown.

e Link: log u;
Log-likelihood:

1B, 7:y) = [logT(yi +1/7) —log T(1/%) — log T(y; + 1)]+_ {y log (1 Fw) - (i) log(1 +wi)}
i=1 i=1 v

Likelihood equations: Y ., % (%) =0

e Hessian: -3 (1+$;)J)CEJ (gg:)

so B [ 95, 87} = 0 and (3, are orthogonal, and ﬁA,’Ay are asymptotically independent.

o Fitting: ; = /2= and var(8) = (X"WX)~! with log link.

e Deviance: D(y;f1) =2, [yl log (%) - (yl + %) log (H;YZZ)}

Model Comparison: Poisson vs. NBin Use LRT with Hy : v = 0 (or informally AIC values). But
since v = 0 is on boundary, the LRT statistic is 1/2 point mass at 0 and 1/2 chi-squared, df = 1,
so the p-value is 1/2 what we obtain by treating LRT statistic as x2.

7.4 Zero-Inflated GLMs

Often counts of 0 are much larger than expected for Poisson; i.e. random vs. structural zero = zero-
inflation. Less problematic for negative binomial, but still can be problem if two modes (i.e. mode at 0,
mode > 0).

Zero-Inflated Poisson (ZIP) Mixture model of: 1) point mass at 0; 2) count distribution (Poisson):

4 0 with probability 1 — ¢;
Yi™ \Pois(\;) with probability ¢

e Unconditional PMF:

P(y;=0) = (1 — ¢;) + gie M, Py; = j) = ¢~
e Model: logit(¢;) = x1;61 and log(A;) = x2152

32



e Latent variable: z;, =0=y; =0, z; =1 = y; ~ Pois(\;); P(z;, =0)=1—¢;, P(z; =1) = ¢;
e Moments: E(y;) = E[E(yi|z:)] = (1 — ¢5) - 0+ i \i = di\;

var(y;) = E[var(y|2i)]+var[E(yi|zi)] = [(1=¢i)-0+@iXi] +[(1=¢:) (0= Xi) >+ (i —piXi)?] =
didi[1+ (1 — ;) \;] > E(y;) (overdispersion)

e Log-likelihood:

U(Br, B2) = ) log[le*1PrerPCB) % Tlog(14eXti%) 4 ) [x1i 1 +yixaifa—e™* % —log(yi!)]
yi=0 1=1 yi>0

e Simpler parametrization: ZIP model has many parameters 31, 32 compared to Poisson. In-
stead, consider: x1; = Xo; and 85 = 71
Interpretability also ruined because parameters do not directly effect E(y;) = ¢;A;; one solu-
tion is to do null model for ¢; (so E(y;) proportional to \;)

Zero-Inflated Negative Binomial (ZINB) Same as Poisson, except negative binomial on count part;
useful when still overdispersion after applying ZIP model

Hurdle Model “Hurdle” crossing 0; P(y; > 0) = m;, P(y; = 0) = 1 — m;; truncated model for y;|y; > 0
o PMF: P(y; = 0) = 1 — m;, P(y; = j) = m il
e Model: logit(m;) = x1;01 and log(u;) = X2;82
° LOg—likelihOOd: l(ﬁl,ﬁg) = ll(ﬂl) + lz(ﬂg) with:

n

L(p) = Z log(1 — ;) + Z log(m;) = Z X181 — ZIOg(l + ex1if)

yi=0 yi>0 yi>0 i=1

l2(B2) = Z [logf (yi; ex%ﬁz) —log[l— f (O;exziﬁz)]]

yi>0
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8 Quasi-Likelihood

QL is motivated by two points:

1. Overdispersion: i.e. for Poisson, restriction of variance = mean made the fit very poor for many
data sets.

2. Mean-variance relation: Likelihood equations only depend on distribution of y; through u; and
v(pq).

So instead of specifying distribution for y;, just pick mean-variance relation v(u;), which seems
appropriate for given data; along with: 1) link function; 2) linear predictor.

8.1 Variance Inflation for Poisson/Binomial GLMs

To motivate QL methods, we use QL to deal with variance inflation in Poisson/Binomial models.

QL Approach to Variance Inflation Suppose standard model (i.e. Poisson/Binomial) assumes v* (u;),
but actual variance may be different, i.e.:

lvar(yi) = v(pi) = pv*(ps)

for constant ¢ (¢ > 1 is overdispersion case.)

e Substitute v(y;) into likelihood equations; ¢ drops since equal to zero: Y, Wizpi)ey (g‘;}?) =

)
0= > % (gT”]Z) = 0 so identical to likelihood equations for GLM with variance
0" (1q).-
e Fits/estimates identical; w; = (35;!(27;)2 = (a(;;";/gj"'))z‘ so asymptotic var(f) = (XTWX)~! =

H(XTW*W)~! for the QL-adjusted model. (i.e. SEqrL = \/5 X SEstandard |)

A2
e Pearson statistic: X2 =13, % for standard model.

If variance inflation, then X2 doesn’t fit well; for QL model, want X?/¢ ~ x2_, so E(X?/¢) ~
n—p= E[X?/(n—p)] ~ ¢ and:

So steps to fitting QL approach are:

1. Fit standard GLM with variance v*(u;), and use p ML estimates 3

2. Multiply standard SE estimates by \/; =/X2/(n—p)

Overdispersed Poisson v(u;) = ¢pu;, with identical parameter estimates, and Pearson statistic: X2 =

52 ~
> (y“i”) so ¢ = X?2/(n — p) for variance-inflation estimate

Overdispersed Binomial Let n;y; ~ Bin(n;, 7;); overdispersion due to: 1) heterogeneity due to un-
observed variables; 2) positive correlation between Bern trials (alternative: use Beta-Binomial)

Variance function: v(u;) = ¢m;(1 —m;)/n;

X2 _ 1 Z (yi—#i)?

Pearson statistic/estimate: (;AS = nep = mep 2ui T(1=Fs) mn

Note: Does not work for ungrouped data, because necessarily var(y;) = m;(1 — ;) structurally
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8.2 Beta-Binomial Models

Handling Binomial overdispersion (without structural problems as in variance-inflation) due to: 1) cor-

related trials; 2) unobserved heterogeneity

1) Correlated Bernoulli Trials Let y;1,. ..

independent, i.e. corr(yi;, yir) = p: var(y;;) = mi(1 —

. Yin, be n; Bernoulli trials for y; =
i), Cov(ysj, yir) = pmi(1 — m;), so:

1
var(y;) = 2Var Zyw =3 Zvar vij) + QZCOV Yij» Yik)
" i<k

Uz

jl’ﬂ

S

5 [nimi(1=m3)+n;(n
7

n;

= |var(y;) =

[1+ p(n; —

D]

’/Tl(l — 7Ti)

Lz

so overdispersion when p > 0 (also works when n; = 1 since just binomial variance)

Using QL with v(m;) = [1 + p(n; —

1. Solve quasi-likelihood equations for 3 given p: > EC
3 Cox2
2. Use updated f to solve: X? =" =

i (1—;
1) mlm,

. If trials not

i—1)pmi(1—m;)]

the estimates differ from ML estimates (since
1+ p(n; — 1) term doesn’t drop out of likelihood equations). Iterative method:

(yi—i)?

y'_ﬂ'l)iz =0

71)]7"1(1 7"1)/"1

2) Heterogeneity: Mixture Model (Beta-Binomial) Mixture model over 7 for s = ny:

Properties of the Beta distribution:

e PDF: f(m; a1,a0) = Mwalfl(l

I(c)T(az2)

s|m ~ Bin(n, )

m ~ Beta(ay, az)

—m~! for ay, a9 >0

=n — p (Pearson to expected value)

e Shapes: uniform (ag = ap = 1); unimodal symmetric (@1 = ap > 1); unimodal skewed left

(o1 > ag > 1) or right (ag > aq > 1); U- shaped (01,2 < 1)

e Re-parametrization: y = —%— and 0 =

a1+az

e Moments: E(m) = p and var(m)

e Beta-Binomial: Marginal of s = ny:

[ f— o(u+k9)H io (L=t kO)
[ 0( + ko)

p(sin, p,0) = (

e Marginal moments: E(y) = p and var(y) = {1 +(n—-1) 1+9]

e Correlation: p = 1149

n
S

)

a+o¢

= p(l - M)m

p(d=p)

is exactly the correlation between Bernoulli trials

e Model: assume @ identical for all observations; say n;y; ~ Beta-Bin(n;, p;, 0) then use logit
link: logit(u;) = x;0 (can use Newton-Raphson, but Beta-Bin not in EDF!)

e If not actually Beta-Binomial, estimates {3 are not robust or consistent.

8.3 Model Misspecification and Robust Estimation

Unlike Beta-Binomial mixture model, QL methods are robust to model misspecification!

Estimating Equations The quasi-score / estimating equations are:

u(f) = ; (f;/;

T
> Yi —

v(pi)

Hi

=0

i.e. using the fact that ggl = g/;w Tij.

Quasi-score function u;(3) is an unbiased estimating function because Efu;(5)]

unbiased estimating function, the estimating equations yield estimator B .
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Quasi-Likelihood Properties QL treats quasi-score u(3) as derivative of quasi-log-likelihood func-
tion, which yields nice properties like ML:

o If 1u;, v(p;) are correct, then QL estimators 3 are asymptotically efficient for estimators locally
linear in y;
-1

. T
e 3 are asymptotically normal with V = {Z?_l (%lg) [0(ps)] ! (%731)]

e Key result: /3 are consistent for 3 even if v(p;) is misspecified! (as long as link function +
linear predictor are correct)

Robust Covariance Estimation: Sandwich Matrix Generally, var(y;) # v(u;); then the asymp-
totic V is incorrect. To find var(), use Taylor expansion of u(8): u(3) ~ u(8)+ 8u(5 )(B—B) and
. . —1 . 7 -
since u(3) = 0 by definition, (3—/3) ~ — (837?) u(f) so that var(8) ~ <8u(ﬂ)) var[u(f)] (6'57(;))
@) : : Teali : au(s)\ .
But ( 25 ) is Hessian of quasi-log-likelihood, so symmetric and —( 5 ) = V is inverse

information matrix for specified model; and

T T
o] = [ (457)" 25| = S0 (240 it (242 o
oo I (O B\ T var(y:) [ Opi(B)
Vaf(ﬂ)NV[Z< e ) [U(Hi)]Q( o8 ﬂv

which simplifies to V if var(y;) = v(u;). But generally we don’t know var(y;), so we estimate:
wi — fi; and var(y;) — (y; — f1;)? and obtain the sandwich estimator:

355 St (5]

i=1

var(B) =~ V l

Sandwich estimator is robust: whether or not v(p;) is correct, n times estimator converges in
probability to asymptotic covariance matrix of /n(8 — )!

Example: Poisson Misspecification: Suppose model y; ~ Pois(y;), but actually var(y;) = p?;
consider null model p; = 8 = 8“’ =1,s0: u(B) =31, (%ﬂl) [o(u)] ™ (i — i) = 320, =

. . -1
S y’gﬂ = 0 so B = i and model-based variance is: V = [Z?zl (%‘g) [v(us)] 71 (%’g)} = %
so that V = %
The true variance of B using var(y;) = p? is: %2 = % which is different when g > 1. The robust

)2
sandwich estimator (since we don’t know var(y;)) is, using u; = =9, >, %
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9 Correlated Data

Possible cases: 1) Survey asks for opinions on related questions/topics, so answers will be correlated;
2) Clinical trial observes same subjects over time, and measurements from each time point are correlated.

Notation: y; = (yi1,...,¥id), i.e. each subject ¢ has cluster of d obs (i.e. one subject observed over d
time points); x;; is row vector of p explanatory variables for v;;; ti; = E(yij;)-

Two types of models: 1) marginal model (model each marginal y;; and use correlation structure for
SE); 2) generalized linear mixed model (model entire cluster, using random effect for each cluster)

Two types of effects: 1) between-subject (between-cluster); 2) within-subject (within-cluster).

Example: 2x2 Design. Suppose treatments A, B given at times 1,2 (d = 2); treatment = between-

subjects, time = within-subjects. (y4, ) and (y5,y5) are for subject i in A or B. Let corr(yX,y%) = p
and corr(yﬁ,yﬁ) = 0, var(y]}) = var(yZ) = o?. Let g = %Z;;l y and yP = %Z?:l yZ. Then
A -A _B,-B _A,-B _A |, -B
between-subjects effect is b = % - % and within-subjects effect is w = % - % Then
2 2
we have var(b) = # and var(w) = #, but if we assume independence than they are both

so standard errors are too small for var(b) and too large for var(w).

a?
n’

9.1 Marginal Models and GLMMs

Marginal Model | g(p;;) =x;;8 |foralli=1,...,nand j =1,...,d (for between-cluster effects)

i.e. models marginal distribution of each y;;, so GLM structure for each y;;.

Example: y;; is score on test j for student i, with GPA z;, so then 5 = (Bo1, f11, -, Bod, B1d)
and x;; = (0,0,...,1,2,,...,0,0)

GLMM ’g[E(yij|ui)] =x;;6 +z;u; |fori=1,...,nand j =1,...,d (for within-cluster effects)

B are fixed effects (constant) and u; are random effects (has probability distribution)

Generally u; ~ N(0,%,) i.i.d.; common u; for all j, which leads to correlation; given conditional
of (yi1,.-.,Yid)|us, distribution is specified for y.

Intuition: 8 must apply to all subjects identically if they have the same values of the explanatory
variables x; but random effects apply to each individual differently while preserving model parsi-
mony (if we wanted to include u; as fixed effect, we’d have to have a separate parameter for each
person, so p «x n, while now we only have X, added); u; variability reflects that different subjects
with identical x; may be heterogeneous due to unobserved variables.

Example: Random-Intercepts Model. Let z;;u; = u;, i.e. add a random intercept. If y;; is
score on exam j and x; = GPA, then: E(y;j|u;) = Boj + B1jzi +u; = (Boj + u;) + S1;2; which adds
separate intercept Bo; + u; for each subject!

Example: Matched-Pairs, Binary-Normal Model. Let (y;1,¥:2) be matched pair of observations
for subject i, with success = 1. Compare P(y;; = 1) and P(y;2 = 1).

e Marginal model: logit[P(y;; = 1)] = By + fiz; for z1 = 0,22 = 1; average over all
observations and use Binomial; i.e. consider success/failure totals ni; (success/success), nig
(success/failure), noy (failure/success), nag (failure/failure). (; is the log odds ratio comparing
success in observation 2 vs. observation 1 (over entire population) so population-averaged
effect

o GLMM: logit[P(yi; = 1|u;)] = Bo + Bix; + u;; uses individual contingency table; 51 is log
odds ratio at the individual level so subject-specific effect (u; basically centers regression
at mean of each subject, so 81 can be steeper to take care of each individual effect)

The population-averaged = subject-specific effect if identity link, but not for any other links. For
B;narginal _ log ni1/nyo while BchMM _ log N2y

example above,
nit/noy ni2
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GLMM — Marginal To find the between-cluster effects for GLMM (for which it’s not natural), we
have to integrate out u; using LIE; i.e. E(y;) = E[E(yi|u;)] = E[g~ (x84 zi;u;)]; leads to exact
same marginal model if identity link; different form otherwise

9.2 Normal Linear Mixed Model

Start with simplest, normal linear mixed model: E(y;;|w;) = xi;8 + z;5u; 1.e. yi; = X358 + 2,0, + €;;
where 3 is p x 1 vector of fixed effects, u; ~ N(0,%,) is ¢ x 1 vector of random effects, €;; ~ N(0,02).
Generally, y; = XZ-B +Z;u; +¢; (X; is d x p model matrix, Z is d x ¢ model matrix for random effects,
€ ~N(0,021)). E(yilu;) = X8+ Z;u; and var(y;) = Z;SuZ] + 0'21

Random—Intercepts Model: u; = u;, Z; = 1 and var(ul) = 02, Then var(y;) = 02117 + 021 so

that corr(y;j, yik) = for j # k (exchangeable/compound symmetry)

ﬂi—&-az
9.3 GLMM Fitting and Inference
No closed-form likelihood, so model fitting is difficult.

Marginal Likelihood/Maximum Likelihood GLMM is two-stage: 1) conditional on u;, fit a GLM
with known effect z;;u;; 2) u; ~ N(0,%,) so fit parameters.

Marginal likelihood is: To fit likelihood for 3, 3, integrate out random effects:

L(8, Suiy) = £(y: 6. Su) /fﬂu Su)du

Example: Logistic-Normal Random-Intercepts Model.
n

> exp(xiiB +u;) \" 1 o)
ﬁv uay H [ H (1+GXP(;”B+UZ)> (1+6Xp(xijﬁ+ui)> f(uzao—u)duz

i=1

Need to approximate this numerically and then maximize: 1) Gauss-Hermite quadrature; 2) Monte-
Carlo; 3) Laplace approximation; 4) EM algorithm

GLMM Inference Inference for fixed effects is standard (i.e. LRT for nested models); but for random
effects is more complex (because if variance = 0, then on boundary, so likelihood-based inference
doesn’t work); i.e. Ho: 02 =0vs. Hy : 02 > 0 has the mixed distribution of £8y 4+ 23 so the
p-value is £P(x3 > tops)

9.4 Marginal Model Fitting and Inference

ML fitting generally only possible for multivariate normal response; if not, we need to use multivariate
QL, i.e. GEE.

Multivariate Normal Regression y; = (yi1,-..,viq) and y;; = X;;8 + €; with ¢, ~ N(0,V;) so
that y ~ N(X3,V) where X is stacked X; of dimension dn X p then we have GLS estimator
B — (XTv—lx)—lev—ly

Generalized Estimating Equations (GEE) Lack of discrete distributions that can show correlation
structures; use QL-like method, where we specify: 1) p;; = E(y;;); 2) v(pi;); 3) working corre-
lation structure corr(y;;), y;x). Simple correlation structures:

e Exchangeable: corr(y;;, yir) = @
e Autoregressive: corr(y,j, yix) = ali ="l
e Independent: corr(y;;, yix) =0
o Unstructured: corr(y;j, yix) = ok
When link function + linear predictor are correct, GEE estimator B are still consistent for 3 even

if correlation is incorrect. But standard errors are wrong, so we need to use robust sandwich
estimator.
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Marginal model: g(u;;) = x;;5; V; is working covariance matrix for y; based on working correlation
matrix R(a); if R(«) is true correlation, then V; = var(y;). Let D; = %‘g be d x p matrix of jk
Opij

T
elements 25 Recall: univariate QL estimating equations were: ), (%’g) [0(1)] ™ (i — pi) = 0,

so the multivariate analog is generalized estimating equations:

> DIV yi—m)=0
=1

GEE estimator B is solution to GEE equations. Iterated method: 1) estimate 8 given current esti-
mate of a; 2) estimate « given current estimate of 3 using moment estimation (pairwise empirical

correlation). Then: (3 — ) 4 N(0,Vg/n) where:

n -1 n n -1
var(B) ~ v& ~ [Z D,TV;lDZ-] [Z D?V;l[vadyi)]V;lDi] [Z D?V;lDi]

i=1 =1 =1
Estimated sandwich matrix Vg/n for 3 replaces 8 — B, o — (257 a — &, and var(y;) —
(i — i) (yi — fua)™
Disadvantages of GEE approach:
1. No likelihood: can’t do likelihood methods (i.e. LRT, deviance) for fit, model comparison,
inference
2. Categorical data: “correlation” not really natural for discrete data

3. Stronger missing data assumption: compared to ML, strong missing data; GEE must have
MCAR, but ML only requires MAR

39



Important Formulae
Ely" Ay] = trace(AV) + " Apu
d(a” B)

op

A(BTAB)
op
Likelihood results: for log-likelihood I:
ol
ElZ)=
() =0

921 a1\ ?
_E(W):E(%)
2L\ oL\ [ ol
E@@%)EKw)<wJ}

=(A+A")B
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