# Linear and Generalized Linear Models Lectures Notes (STAT 244, Fall 2014)

#### Won I. Lee

### 1 Introduction

### 1.1 GLM Components

Three components of a GLM The 3 components are:

- 1. Random component: distribution of  $y_i$ , i.i.d.
  - $\bullet$  Response variable y has exponential dispersion family
  - $\sum_{i} y_{i}$  is sufficient statistic
- 2. Linear predictor:  $\eta = \mathbf{X}\beta$  with  $n \times p$  model matrix  $\mathbf{X}$  and parameters  $\beta$ 
  - $x_{ij}$  is value of explanatory variable  $x_j$  for observation i
  - $\mathbf{x_i} = (x_{i1}, \dots, x_{ip})$
  - $\eta_i = \sum_j \beta_j x_{ij}$

$$\bullet \ \mathbf{X} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}$$

- 3. Link function: g linking mean to linear predictor;  $g[E(\mathbf{y})] = \eta = \mathbf{X}\beta$ 
  - $g(\mu_i) = \sum_j \beta_j x_{ij}$
  - Canonical link: g s.t. transform  $\mu_i$  to natural parameter  $\theta_i$ ; then we have concave log-likelihood, simple likelihood equations, Fisher scoring = Newton-Raphson, etc.
  - Binary response: logit  $(\theta_i = \text{logit}(\mu_i) = \text{logit}(\pi_i))$
  - Count response:  $\log (\theta_i = \log(\mu_i))$
  - Continuous response: identity  $(\theta_i = \mu_i)$

Why GLMs? We can transform data instead. But this requires a transformation that yields simultaneously: 1) approximate normality; 2) homoscedasticity. This often conflicts with each other.

For GLMs, two separate choices/degrees of freedom: 1) choice of link function; 2) choice of random component. Gives freedom to model and fit data well without having to worry about normality or homoscedasticity.

Finally, GLM models  $g[E(y_i)]$ , so we can say that  $E(y_i) = g^{-1}(\mathbf{x_i}\beta)$ , i.e. we have direct interpretability of parameters.

#### 1.2 Quantitative vs. Qualitative Variables

Types of Explanatory Variables In linear predictors, they can be:

- Quantitative: simple linear regression; single term  $\beta_j x_j$  and single column in X
- Qualitative: ANOVA, odds ratios (binary); if c categories, require c-1 terms (indicators) in linear predictor and c-1 columns in  $\mathbf{X}$  (i.e. one is baseline)
- Mized: i.e. interaction of quantitative × qualitative; ANCOVA (analysis of covariance due to interaction term)
- Ordinal: ordered categorical variables can be treated as either quantitative or qualitative

### 1.3 Model Matrices and Vector Spaces

Matrices Induce Vector Spaces Consider all possible  $\eta = \mathbf{X}\beta$  for all possible  $\beta$ . This is:

$$\eta = \beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p$$

i.e. a linear combination of the *columns* of X. Thus,  $\eta$  lives in the **column space** of X:

$$C(\mathbf{X}) = \{ \eta : \eta = \mathbf{X}\beta \} = \{ \mathbf{X}\beta : \beta \in \mathbb{R}^p \}$$

This is called the *model space* of the GLM. Properties:

- Models with matrices  $\mathbf{X}_a, \mathbf{X}_b$  are equivalent if  $C(\mathbf{X}_a) = C(\mathbf{X}_b)$
- If model a is nested in model b, then  $C(\mathbf{X}_a) \subset C(\mathbf{X}_b)$

**Dimension of**  $C(\mathbf{X})$  Rank of the model matrix  $\mathbf{X}$  is equal to number of linearly independent columns, so:

$$\dim(C(\mathbf{X})) = \operatorname{rank}(\mathbf{X}) \le p$$

If equal p, then **X** has full rank. If not full rank, then  $\dim(N(\mathbf{X})) > 0$ ; i.e. model matrix has redundancies, or aliasing.

- Extrinsic: When variable (usually quantitative) just happens to be linear combination of the others (collinearity)
- Intrinsic: Inherent redundancy in matrix, i.e. when one-way ANOVA has both intercept term (all 1) and all indicators (no baseline)

**One-Way ANOVA** Used for comparing means across different groups/categories, each group labeled by an indicator  $I_i$ . Suppose c groups, i = 1, ..., c, and  $j = 1, ..., n_i$  observations in each group.

$$g[E(y_{ij})] = \beta_0 + \beta_i = \beta_0 + \beta_1 I_{i1} + \dots + \beta_c I_{ic}$$

Significance test of null hypothesis,  $H_0: \mu_1 = \cdots = \mu_c$ . Combining terms:

$$\mathbf{y} = (y_{11}, \dots, y_{1n_1}, \dots, y_{c1}, \dots, y_{cn_c})$$
$$\beta = (\beta_0, \beta_1, \dots, \beta_c)$$

This results in the non-identifiable, intrinsically aliased model matrix:

$$\mathbf{X} = egin{pmatrix} \mathbf{1}_{n_1} & \mathbf{1}_{n_1} & \cdots & \mathbf{0}_{n_1} \ \mathbf{1}_{n_2} & \mathbf{0}_{n_2} & \cdots & \mathbf{0}_{n_2} \ dots & dots & \ddots & dots \ \mathbf{1}_{n_c} & \mathbf{0}_{n_c} & \cdots & \mathbf{1}_{n_c} \end{pmatrix}$$

#### 1.4 Identifiability and Estimability

**Identifiability** Parameters  $\beta$  are identifiable if whenever  $\beta^* \neq \beta \Rightarrow \mathbf{X}\beta^* \neq \mathbf{X}\beta$ .

Another characterization is  $\mathbf{X}\beta^* = \mathbf{X}\beta \Rightarrow \beta^* = \beta$ . This is equivalent to  $\mathbf{X}$  being invertible; columns of  $\mathbf{X}$  being linearly independent; and  $\mathbf{X}$  having full rank.

**Example: One-Way ANOVA.** The model matrix above is not identifiable because:  $\beta = (\beta_0, \beta_1, \dots, \beta_c)$  and  $\beta^* = (\beta_0 + d, \beta_1 - d, \dots, \beta_c - 3)$  both yield the same linear predictor, namely  $\beta_0 + \beta_i$ . Thus, we drop the baseline category 1, and get:

$$\mathbf{X} = egin{pmatrix} \mathbf{1}_{n_1} & \mathbf{0}_{n_1} & \cdots & \mathbf{0}_{n_1} \ \mathbf{1}_{n_2} & \mathbf{1}_{n_2} & \cdots & \mathbf{0}_{n_2} \ dots & dots & \ddots & dots \ \mathbf{1}_{n_c} & \mathbf{0}_{n_c} & \cdots & \mathbf{1}_{n_c} \end{pmatrix}$$

Thus, our new parameters are  $\beta = (\beta_0, \beta_2, \dots, \beta_c)$  and  $\beta_0 = \mu_1$  and  $\beta_i = \mu_i - \mu_1$ . Ways to achieve identifiability:

- Drop a parameter: first-category ( $\beta_1 = 0$ ) or last-category baseline ( $\beta_c = 0$ )
- Add a constraint:  $\sum_{i} n_{i} \beta_{i} = 0$  or  $\sum_{i} \beta_{i} = 0$

General Identifiability  $\mathbf{a}^T \boldsymbol{\beta}$  is identifiable if  $\mathbf{a}^T \boldsymbol{\beta}^* \neq \mathbf{l}^T \boldsymbol{\beta} \Rightarrow \mathbf{X} \boldsymbol{\beta}^* \neq \mathbf{X} \boldsymbol{\beta}$  (allows for linear combinations and selecting out subsets of parameters)

Estimability  $\mathbf{a}^T \beta$  is estimable if  $\exists$  coefficients  $\mathbf{c}$  such that  $E(\mathbf{c}^T \mathbf{y}) = \mathbf{a}^T \beta$ .

Note that the definition implies that all estimable quantities are linear combinations of the means. If  $\beta$  is identifiable, all quantitatives  $\mathbf{a}^T \beta$  are estimable.

## 2 Linear Models: Least Squares Theory

**Notation:**  $\mathbf{y} = (y_1, \dots, y_n)$  and  $\mu_i = E(y_i)$ ;  $\mu = (\mu_1, \dots, \mu_n)$ . The covariance matrix is:  $\mathbf{V} = \text{var}(\mathbf{y}) = E[(\mathbf{y} - \mu)(\mathbf{y} - \mu)^T]$ 

**Linear Model:**  $\mu = \mathbf{X}\beta$  and  $\mathbf{V} = \sigma^2 \mathbf{I}$  (i.e. identity link with i.i.d. homoscedastic errors)

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon, \epsilon \sim \mathbf{0}, \sigma^2 \mathbf{I}$$

(This additive structure makes no sense for most GLMs, such as logistic, log-linear, etc., but does for normal linear model and latent variable formulations.)

### 2.1 Least Squares Fitting

**Least Squares** How do we get best estimates of parameters  $\hat{\beta}$  and fitted values  $\hat{\mu} = \mathbf{X}\hat{\beta}$ ? Use least squares:

$$\min \|\mathbf{y} - \hat{\mu}\|^2 = \min \sum_{i} \left( y_i - \sum_{j} \beta_j x_{ij} \right)^2$$

Least squares corresponds to maximum likelihood when  $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ .

**Normal Equations** Minimize squared error by differentiating  $L(\beta) = \sum_i (y_i - \mu_i)^2 = \sum_i (y_i - \sum_j \beta_j x_{ij})^2$ :

$$\frac{\partial L}{\partial \beta_j} = \sum_{i} (y_i - \hat{\mu}_i) x_{ij} = 0$$

$$\Rightarrow \left[\sum_{i} y_{i} x_{ij} = \sum_{i} \hat{\mu}_{i} x_{ij}\right]$$

These are **normal equations**; solving yields estimates  $\hat{\beta} = \mathbf{X}^{-1}\hat{\mu}$ . Using matrix algebra:

$$L(\beta) = \|\mathbf{y} - \mathbf{X}\beta\|^2$$

Use matrix derivatives:

$$\frac{\partial (\mathbf{a}^T \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{a}$$

$$\frac{\partial (\beta^T \mathbf{A} \beta)}{\partial \beta} = (\mathbf{A} + \mathbf{A}^T) \beta$$

This yields the matrix **normal equations**:

$$\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} \Rightarrow \boxed{\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}}$$

Hat Matrix Note that:

$$\hat{\mu} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

where we define the **hat matrix**:  $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$  and is  $n \times n$ .  $\mathbf{H}$  projects y onto  $C(\mathbf{X})$ , the model space;  $\hat{\mu} \in C(\mathbf{X})$ . Recall that, using  $\beta = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ :

$$E(\hat{\beta}) = \beta, \text{var}(\hat{\beta}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$

**Bivariate Regression** Let  $E(y_i) = \beta_0 + \beta_1 x_i$ , with  $x_i$  being a quantitative variable. Then the normal equations yield:

$$\sum_{i} y_{i} = n\beta_{0} + \beta_{1} \sum_{i} x_{i}, \sum_{i} x_{i} y_{i} = \beta_{0} \sum_{i} x_{i} + \beta_{1} \sum_{i} x_{i}^{2}$$
$$\Rightarrow \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}, \hat{\beta}_{1} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}}$$

But we see that the Pearson product-moment correlation is:

$$r = \operatorname{corr}(x, y) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}} = \hat{\beta}_{1} \frac{s_{x}}{s_{y}}$$

So we see that:  $\hat{\beta}_1 s_x = r s_y$ , that is a change in  $s_x$  in x only yields a change in r in  $\hat{\mu}$ , so we have regression towards the mean.

Orthogonal Subspaces, Residuals Key results from linear algebra:

- $\mathbf{u}, \mathbf{v}$  are orthogonal if  $\mathbf{u}^T \mathbf{v} = 0$
- Orthogonal complement if **W**, vector subspace of  $\mathbb{R}^n$ , is the set of all **v** orthogonal to every  $\mathbf{u} \in \mathbf{W}$ .
- $\dim(\mathbf{W}) + \dim(\mathbf{W}^{\perp}) = n$
- Every  $\mathbf{y} \in \mathbb{R}^n$  has a unique orthogonal decomposition into  $\mathbf{y} = \mathbf{y}_W + \mathbf{y}_{W^{\perp}}$

 $C(\mathbf{X})^{\perp}$  is the set of all vectors that are orthogonal to all vectors in  $C(\mathbf{X})$ ; since the columns are in  $C(\mathbf{X})$ , we must have  $\mathbf{X}_i^T\mathbf{v} = 0$ , where  $\mathbf{X}_i$  is a column of  $\mathbf{X}$ . Thus,  $\mathbf{X}^T\mathbf{v} = \mathbf{0}$ , so:

$$C(\mathbf{X})^{\perp} = N(\mathbf{X}^T)$$

Now we define the **residual**:  $\mathbf{e} = \mathbf{y} - \mathbf{X}\hat{\beta}$ .

From the normal equations,  $\mathbf{X}^T(\mathbf{y} - \mathbf{X}\hat{\beta}) = \mathbf{X}^T\mathbf{e} = 0$  so we must have  $\mathbf{e} \in N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ 

### 2.2 Projections Onto Model Spaces

**Projection Matrices** A square matrix **P** is a projection matrix onto vector subspace **W** iff:

- 1.  $\mathbf{y} \in \mathbf{W} \Rightarrow \mathbf{P}\mathbf{y} = \mathbf{y}$
- 2.  $\mathbf{y} \in \mathbf{W}^{\perp} \Rightarrow \mathbf{P}\mathbf{y} = 0$

Equivalently, **P** is project iff:

- 1. **P** is symmetric
- 2.  $\mathbf{P}^2 = \mathbf{P}$ , i.e.  $\mathbf{P}$  is idempotent

Properties of projection matrices include:

- **P** projects onto the space spanned by the columns of **P**, that is  $C(\mathbf{P})$
- $\mathbf{y} = \mathbf{y}_P + \mathbf{y}_{P^{\perp}}$  uniquely decomposes, so that  $\mathbf{P}\mathbf{y} = \mathbf{y}_P$  is unique
- Projection matrix onto any subspace W is unique
- If **P** projects onto **W**, then I P projects onto  $W^{\perp}$ , so that y = Py + (I P)y
- ullet Eigenvalues of  ${f P}$  are all 0 or 1
- $rank(\mathbf{P}) = trace(\mathbf{P})$ , since the rank of a symmetric matrix is number of nonzero eigenvalues
- If  $\{\mathbf{P}_i\}$  are symmetric matrices such that  $\sum_i \mathbf{P}_i = \mathbf{I}$ , then the following are equivalent: 1)  $P_i$  are idempotent; 2)  $\mathbf{P}_i \mathbf{P}_j = 0$  for all i, j; 3)  $\sum_i \operatorname{rank}(\mathbf{P}_i) = n$

**Projection Matrices for Linear Model Spaces** Let  $\mathbf{P}_X$  be the projection matrix onto  $C(\mathbf{X})$ . We have the following properties:

- If **X** is full rank, then  $P_X = H$
- If  $\mathbf{X}, \mathbf{W}$  are equivalent models, that is  $C(\mathbf{X}) = C(\mathbf{W})$ , then  $\mathbf{P}_X = \mathbf{P}_W$
- When model a is nested in b, i.e.  $C(\mathbf{X}_a) \subset C(\mathbf{X}_b)$ , then  $\mathbf{P}_a \mathbf{P}_b = \mathbf{P}_b \mathbf{P}_a = \mathbf{P}_a$  and  $\mathbf{P}_b \mathbf{P}_a$  are projection matrices

**Orthogonal Parameters** If  $\mathbf{X}_1$  is orthogonal with  $\mathbf{X}_2$ , then the effects of the reduced model  $\mu = \beta_1 \mathbf{X}_1$  is the same as the effects of the full model  $\mu = \beta_{1\cdot 2} \mathbf{X}_1 + \beta_{2\cdot 1} X_2$ . Suppose that  $\mathbf{X} = (\mathbf{X}_1 : \mathbf{X}_2)$ . Then:

$$\mathbf{X}^{T}\mathbf{X} = \begin{pmatrix} \mathbf{X}_{1}^{T}\mathbf{X}_{1} & 0 \\ 0 & \mathbf{X}_{2}^{T}\mathbf{X}_{2} \end{pmatrix}, \mathbf{X}^{T}\mathbf{y} = \begin{pmatrix} \mathbf{X}_{1}^{T}\mathbf{y} \\ \mathbf{X}_{2}^{T}\mathbf{y} \end{pmatrix}$$
$$\Rightarrow \beta = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y} \Rightarrow \begin{pmatrix} \beta_{1} \\ \beta_{2} \end{pmatrix} = \begin{pmatrix} (\mathbf{X}_{1}^{T}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}^{T}\mathbf{y} \\ (\mathbf{X}_{2}^{T}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}^{T}\mathbf{y} \end{pmatrix}$$

so the parameters are exactly the same as when fitted separately

**Pythagoras' Theorem for Linear Models** Because of orthogonality properties of the projection onto the model space, we can apply Pythagoras' theorem:

- Unique least squares fit:  $\|\mathbf{y} \mathbf{P}_X \mathbf{y}\| \le \|\mathbf{y} \mathbf{z}\|$  for all  $\mathbf{z} \in C(\mathbf{X})$
- True and sample residuals:  $\|\mathbf{y} \mu\|^2 = \|\mathbf{y} \hat{\mu}\|^2 + \|\hat{\mu} \mu\|^2$  (assuming that the model is correct, i.e.  $\mu \in C(\mathbf{X})$ )
- Data = fit + residuals (sum of squares):  $\|\mathbf{y}\|^2 = \|\hat{\mu}\|^2 + \|\mathbf{y} \hat{\mu}\|^2$

### 2.3 Linear Model Examples

**Null Model**  $E(y_i) = \beta$  (no explanatory variables) Then, the model matrix and projection matrix are:

$$\mathbf{X} = \mathbf{1}_n, \mathbf{P}_X = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T = \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T$$

This yields the fitted values:  $\hat{\mu} = \mathbf{P}_X \mathbf{y} = \bar{y} \mathbf{1}_n$ 

The corresponding sum of squares is:  $\mathbf{y}^T \mathbf{y} = \mathbf{y}^T \mathbf{P}_X \mathbf{y} + \mathbf{y}^T (\mathbf{I} - \mathbf{P}_X) \mathbf{y} \Rightarrow \sum_i y_i^2 = n \bar{y}^2 + \sum_i (y_i - \bar{y})^2$ 

One-Way Layout The non-identifiable model matrix and generalized inverses are:

$$\mathbf{X} = \begin{pmatrix} \mathbf{1}_{n_1} & \mathbf{1}_{n_1} & \cdots & \mathbf{0}_{n_1} \\ \mathbf{1}_{n_2} & \mathbf{0}_{n_2} & \cdots & \mathbf{0}_{n_2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{1}_{n_c} & \mathbf{0}_{n_c} & \cdots & \mathbf{1}_{n_c} \end{pmatrix}, (\mathbf{X}^T \mathbf{X})^{-} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1/n_1 & \cdot & 0 \\ \vdots & \vdots \ddots & \vdots \\ 0 & 0 & \cdots & 1/n_c \end{pmatrix}$$

Alternatively, we can use the first-category baseline constraint:

$$\mathbf{X} = egin{pmatrix} \mathbf{1}_{n_1} & \mathbf{0}_{n_1} & \cdots & \mathbf{0}_{n_1} \ \mathbf{1}_{n_2} & \mathbf{1}_{n_2} & \cdots & \mathbf{0}_{n_2} \ dots & dots & \ddots & dots \ \mathbf{1}_{n_c} & \mathbf{0}_{n_c} & \cdots & \mathbf{1}_{n_c} \end{pmatrix}$$

Either way, we get the projection matrix:

$$\mathbf{P}_X = \begin{pmatrix} \frac{1}{n_1} \mathbf{1}_{n_1} \mathbf{1}_{n_1}^T & 0 & \cdots & 0 \\ 0 & \frac{1}{n_2} \mathbf{1}_{n_2} \mathbf{1}_{n_2}^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{n_c} \mathbf{1}_{n_c} \mathbf{1}_{n_c}^T \end{pmatrix}$$

which yields:  $\hat{\mu} = \mathbf{P}_X \mathbf{y} = (\bar{y}_1, \dots, \bar{y}_1, \dots, \bar{y}_c, \dots, \bar{y}_c)$ 

The relevant sum of squares decomposition for one-way ANOVA is:

$$y_{ij} = \bar{y} + (\bar{y}_i - \bar{y}) + (y_{ij} - \bar{y}_i)$$

i.e. obs = overall mean + between-groups + within-groups. This corresponds to using the  $\mathbf{P}_0$  and  $\mathbf{P}_X$  projection matrices for the null model and the one-way layout model, respectively, yielding:

$$\mathbf{y}^{T}\mathbf{y} = \mathbf{y}^{T}[\mathbf{P}_{0} + (\mathbf{P}_{X} - \mathbf{P}_{0}) + (\mathbf{I} - \mathbf{P}_{X})]\mathbf{y}$$

$$\Rightarrow \sum_{i=1}^{c} \sum_{j=1}^{n_{i}} y_{ij}^{2} = n\bar{y}^{2} + \sum_{i=1}^{c} (\bar{y}_{i} - \bar{y})^{2} + \sum_{i=1}^{c} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i})^{2}$$

which yields the ANOVA table:

| Source | Projection matrix           | $\mathrm{d}\mathrm{f}$ | SS                                                       |
|--------|-----------------------------|------------------------|----------------------------------------------------------|
| Mean   | $\mathbf{P}_0$              | 1                      | $n\bar{y}^2$                                             |
| Groups | $\mathbf{P}_X$              | c-1                    | $\sum_{i=1}^{c} (\bar{y}_i - \bar{y})^2$                 |
| Error  | $\mathbf{I} - \mathbf{P}_X$ | n-c                    | $\sum_{i=1}^{c} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$ |
| Total  | I                           | n                      | $\sum_{i=1}^{c} \sum_{j=1}^{n_i} y_{ij}^2$               |

**Two-Way Layout** Suppose we have two facts rather than one (i.e. rows are treatments, columns are experimental blocks). Let there be i = 1, ..., r rows and j = 1, ..., c columns. The model is:

$$E(y_{ij}) = \beta_0 + \beta_i + \gamma_j$$

with  $\beta_1 = \gamma_1 = 0$  for identifiability. Letting  $\mathbf{y} = (y_{11}, \dots, y_{1c}, \dots, y_{r1}, \dots, y_{rc})$ , the relevant projections are:

$$\mathbf{P}_{r} = \begin{pmatrix} 1/c & \cdots & 1/c & \cdots & 0 & \cdots & 0 \\ \cdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ 1/c & \cdots & 1/c & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & 1/c & \cdots & 1/c \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1/c & \cdots & 1/c \end{pmatrix}, \mathbf{P}_{c} = \frac{1}{r} \begin{pmatrix} \mathbf{I}_{r \times r} & \cdots & \mathbf{I}_{r \times r} \\ \vdots & \ddots & \vdots \\ \mathbf{I}_{r \times r} & \cdots & \mathbf{I}_{r \times r} \end{pmatrix}$$

which project onto separate one-way layouts for the row factor and the column factor separately. That is:

$$\mathbf{P}_r \mathbf{y} = (\bar{y}_{1\cdot}, \dots, \bar{y}_{1\cdot}, \dots, \bar{y}_{c\cdot}, \dots, \bar{y}_{c\cdot})$$
  
$$\mathbf{P}_c \mathbf{y} = (\bar{y}_{\cdot 1}, \dots, \bar{y}_{\cdot r}, \dots, \bar{y}_{\cdot 1}, \dots, \bar{y}_{\cdot r})$$

This yields the ANOVA table:

| =       |                                                           |                        |                                                                                    |  |  |  |  |
|---------|-----------------------------------------------------------|------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| Source  | Projection matrix                                         | $\mathrm{d}\mathrm{f}$ | SS                                                                                 |  |  |  |  |
| Mean    | $\mathbf{P}_0$                                            | 1                      | $rcar{y}^2$                                                                        |  |  |  |  |
| Rows    | $\mathbf{P}_r - \mathbf{P}_0$                             | r-1                    | $c\sum_{i=1}^{r}(\bar{y}_{i}\bar{y})^{2}$                                          |  |  |  |  |
| Columns | ${\bf P}_c-{\bf P}_0$                                     | c-1                    | $r \sum_{j=1}^{c} (\bar{y}_{\cdot j} - \bar{y})^2$                                 |  |  |  |  |
| Error   | $\mathbf{I} - \mathbf{P}_r - \mathbf{P}_c + \mathbf{P}_0$ | (r-1)(c-1)             | $\sum_{i=1}^{r} \sum_{j=1}^{c} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y})^2$ |  |  |  |  |
| Total   | I                                                         | n = rc                 | $\sum_{i=1}^{r} \sum_{j=1}^{c} y_{ij}^2$                                           |  |  |  |  |

### 2.4 Summarizing Variability in Linear Models

We can use the fact that the residual is in the error space to glean information about the error term  $\epsilon$ .

Estimating Error Variance We assume that the error term has  $var(\epsilon) = \sigma^2 \mathbf{I}$ , so we want to estimate  $\sigma^2$ . We use the fact that:

$$E(\mathbf{v}^T \mathbf{A} \mathbf{v}) = \text{trace}(\mathbf{A} \mathbf{V}) + \mu^T \mathbf{A} \mu$$

where V is the variance of the error term, that is  $V = \sigma^2 I$ . Using  $A = I - P_X$ , we have:

$$E[\mathbf{y}^{T}(\mathbf{I} - \mathbf{P}_{x})\mathbf{y}] = \operatorname{trace}[(\mathbf{I} - \mathbf{P}_{X})\sigma^{2}\mathbf{I}] + \mu^{T}(\mathbf{I} - \mathbf{P}_{X})\mu = \sigma^{2}\operatorname{trace}(\mathbf{I} - \mathbf{P}_{X}) = \sigma^{2}(n - p)$$

$$\Rightarrow E\left[\frac{\mathbf{y}^{T}(\mathbf{I} - \mathbf{P}_{X})\mathbf{y}}{n - p}\right] = \sigma^{2}$$

So that  $s^2 = \frac{\mathbf{y}^T(\mathbf{I} - \mathbf{P}_X)\mathbf{y}}{n-p} = \frac{\sum_i (y_i - \hat{\mu}_i)^2}{n-p}$  is an unbiased estimator for  $\sigma^2$ ; that is, the average error taken with respect to the dimension of the error space, n-p.  $s^2$  is called the error mean square.

SSE and SSR We split up the sums of squares in ANOVA fashion, to get:

$$\sum_{i} (y_i - \bar{y})^2 = \sum_{i} (\hat{\mu}_i - \bar{y})^2 + \sum_{i} (\mathbf{y}_i - \hat{\mu}_i)^2$$

- Total sum of squares (TSS):  $\sum_i (y_i \bar{y})^2$ , that is the variability in  $y_i$  after correcting for the overall mean (i.e. from null model)
- Regression sum of squares (SSR):  $\sum_{i} (\hat{\mu}_{i} \bar{y})^{2}$ , that is the variability in  $y_{i}$  explained by the model
- Error sum of squares (SSE):  $\sum_i (y_i \hat{\mu}_i)^2$ , that is the variability in  $y_i$  unexplained by the full model

For the one-way layout,  $SSR = \sum_i n_i (\bar{y}_i - \bar{y})^2 = \text{Between-groups SS}$ , whereas  $SSE = \sum_i \sum_j (y_{ij} - \bar{y}_i)^2 = \text{Within-groups SS}$ .

Adding Variables on SSE/SSR When we add more explanatory variables, SSE decreases monotonically while SSR increases monotonically (since we can set new  $\beta_p = 0$ ).

**Sequential Sums of Squares** Consider p explanatory variables  $x_1, \ldots, x_p$ , entered into model 1 at a time. We get incremental SSR:

$$SSR(x_1), SSR(x_2|x_1), \dots, SSR(x_p|x_1, \dots, x_{p-1})$$

where, say,  $SSR(x_2|x_1) = \sum_i (\hat{\mu}_{i12} - \hat{\mu}_{i1})^2$  from fitting with both  $x_1, x_2$  vs. fitting with only  $x_1$  (from orthogonal decomposition). Note:

$$SSR(x_1,...,x_p) = SSR(x_1) + SSR(x_2|x_1) + \cdots + SSR(x_p|x_1,...,x_{p-1})$$

**Partial Sums of Squares** We can consider full conditional SSR of  $x_i$  given all other  $x_{-i}$ :

$$SSR(x_1|x_2,...,x_n), SSR(x_2|x_1,x_3,...,x_n),..., SSR(x_n|x_1,...,x_{n-1})$$

that is, additional variability explained by  $x_i$  given all other variables are already in the model.

 $\mathbb{R}^2$ 

$$R^{2} = \frac{SSR}{TSS} = \frac{TSS - SSE}{TSS} = \frac{\sum_{i} (y_{i} - \bar{y})^{2} - \sum_{i} (y_{i} - \hat{\mu}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

so  $R^2$  measures the proportional reduction in error from null model to full model;  $R^2 \in [0,1]$ .

**Multiple Correlation** Another way to measure predictive power: sample correlation between  $y_i$  and  $\hat{\mu}_i$ . (Note:  $\bar{\mu} = \bar{y}$  due to normal equations with intercept term.)

$$\operatorname{corr}(\mathbf{y}, \hat{\mu}) = \frac{\sum_{i} (y_i - \bar{y})(\hat{\mu}_i - \hat{\bar{\mu}})}{\sqrt{\sum_{i} (y_i - \bar{y})^2} \sqrt{\sum_{i} (\hat{\mu}_i - \hat{\bar{\mu}})^2}} = \frac{\sum_{i} (\hat{\mu}_i - \bar{y})^2}{\sqrt{\sum_{i} (y_i - \bar{y})^2} \sqrt{\sum_{i} (\hat{\mu}_i - \bar{y})^2}}$$
$$\Rightarrow \left[ \operatorname{corr}(\mathbf{y}, \hat{\mu}) = +\sqrt{R^2} = R \right]$$

**Adjusted**  $R^2$  When: 1) n is small; 2) p is large,  $R^2$  is overoptimistic. Thus, we can use the *adjusted*  $R^2$ :

adj. 
$$R^2 = 1 - \frac{SSE/(n-p)}{TSS/(n-1)} = 1 - \frac{n-1}{n-p}(1-R^2)$$

#### 2.5 Residuals, Leverage, and Influence

Residuals are in error space  $\Rightarrow$  orthogonal to model space  $\Rightarrow$  contain information in data not explained by model  $\Rightarrow$  used to investigate model lack of fit.

Plots of Residuals for Model Fit  $corr(\mathbf{e}, \hat{\mu}) = 0$  due to orthogonality, so we can plot  $\mathbf{e}$  vs.  $\hat{\mu}$  to check lack of fit (should have slope 0). Possible problems:

- 1. Heteroscedasticity: "fan-shaped" plot of  ${\bf e}$  vs.  $\hat{\mu}$ , i.e. non-constant variance
- 2. Nonlinearity: "U-shaped" plot; signals higher-order terms neded

Other diagnostic: histogram of residuals should be approximately Normal.

Standardized/Studentized Residuals Recall that:

$$\operatorname{var}(\hat{\mu}) = \sigma^2 \mathbf{H}, \operatorname{var}(\mathbf{e}) = \sigma^2 (\mathbf{I} - \mathbf{H})$$

so the residuals are correlated and don't have variance 1. We want all residuals to have variance 1, so we standardized:

$$r_i = \frac{y_i - \hat{\mu}_i}{s\sqrt{1 - h_{ii}}}$$

so that  $\text{var}(r_i) = \frac{1}{s^2(1-h_{ii})}\sigma^2(1-h_{ii}) \approx 1$ . The studentized residual is obtained by estimating s with all observations besides i. Standardized residual describes how many estimated standard deviations  $e_i$  falls from 0.

**Leverage**  $h_{ii} = [\mathbf{H}]_{ii}$  is leverage of observation i. If  $h_{ii} \approx 1$ , then  $y_i$  has a large influence on  $\hat{\mu}_i$ . Properties:

- $\hat{\mu}_i = \sum_j h_{ij} y_j \Rightarrow \frac{\partial \hat{\mu}_i}{\partial y_i} = h_i i$
- Since we assume  $y_i$  are uncorrelated:

$$Cov(y_i\hat{\mu}_i) = Cov\left(\mathbf{y}_i, \sum_j h_{ij}y_j\right) = \sum_j h_{ij}Cov(y_i, y_j) = h_{ii}Cov(y_i, y_i) = h_{ii}\sigma^2$$

and since  $var\hat{\mu}_i = \sigma^2 h_{ii}$ , we have:

$$corr(y_i, \hat{\mu})i) = \frac{\sigma^2 h_{ii}}{\sqrt{\sigma^2 \cdot \sigma^2 h_{ii}}} = \sqrt{h_{ii}}$$

- With p explanatory variables, leverages have mean  $\frac{p}{n}$
- Larger deviation of  $x_i$  from  $\bar{x}$  yields higher leverage

Cook's Distance To be influential, observation must have: 1) large leverage; 2) large standardized residual. We can combine measures to get Cook's distance:

$$D_i = r_i^2 \left[ \frac{h_{ii}}{p(1 - h_{ii})} \right] = \frac{(y_i - \hat{\mu}_i)^2}{ps^2} \frac{h_{ii}}{(1 - h_{ii})^2}$$

"Adjusting for Other Variables" The effect of  $x_i$  in a model of  $x_1, \ldots, x_p$  is the same as: 1) regressing y on  $x_{-i}$ ; 2) regressing  $x_i$  on  $x_{-i}$ ; 3) effect of regressing residuals from (1) on residuals from (2).

**Example.** Consider  $E(y_i) = \beta_{1\cdot 2}x_{i1} + \beta_{2\cdot 1}x_{i2}$ . 1) Regress  $E(y_i) = \beta_2x_{i2}$ ; 2) Regress  $E(x_{i1}) = \beta_{12}x_{i2}$ . The normal equations are: 1)  $\sum_i x_{i2}(y_i - \hat{\beta}_2x_{i2}) = 0$ ; 2)  $\sum_i x_{i2}(x_{i1} - \hat{\beta}_{12}x_{i2}) = 0$ . Similar equations for multiple regression. Plugging in and solving yields:

$$\hat{\beta}_{1\cdot 2} = \frac{\sum_{i} (y_i - \hat{\beta}_2 x_{i2})(x_{i1} - \hat{\beta}_{12} x_{i2})}{\sum_{i} (x_{i1} - \hat{\beta}_{12} x_{i2})^2}$$

But this is exactly the effect of regressing residuals from (1),  $y_i - \hat{\beta}_2 x_{i2}$  on the residuals from (2),  $x_{i1} - \hat{\beta}_{12} x_{i2}$ . From this we also see that plugging into the regression of residuals equation,

$$\hat{\beta}_{2.1} = \hat{\beta}_2 - \hat{\beta}_{1.2} \hat{\beta}_{12}$$

i.e. the subtracted term represents omitted variable bias from trying to estimate the effect of  $x_1$  without including  $x_2$ .

#### 2.6 Gauss-Markov Theorem

Why least squares? We've noted a number of good properties, such as:

- The least squares estimate  $\hat{\mu}$  is maximally correlated with y
- It yields nice interpretability in terms of orthogonal subspaces, and orthogonal decomposition in terms of fitted values and residuals
- It corresponds to maximum likelihood estimation under normality assumption

We add another optimality condition about least squares:

Gauss-Markov Theorem. If  $E(y) = X\beta$  holds and X has full rank with  $var(y) = \sigma^2 I$ , then the least squares estimator  $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$  is the best linear unbiased estimator (BLUE) of  $\beta$ . That is, for any quantity  $\mathbf{a}^T \beta$ , the estimator  $\mathbf{a}^T \hat{\beta}$  has the minimum variance among all estimators that are: 1) linear in y; 2) unbiased.

If we add normality to  $\mathbf{y}$ , then the least squares estimator becomes minimum variance unbiased estimator (MVUE); i.e., the restriction of linearity in y is removed.

#### 2.7 Generalized Least Squares

If  $\mathbf{y}$  not i.i.d, that is  $\operatorname{var}(\mathbf{y}) = \sigma^2 \mathbf{V}$  with  $\mathbf{V} \neq \mathbf{I}$ , use GLS. Use spectral decomposition to write  $\mathbf{V} = \mathbf{Q}\Lambda\mathbf{Q}^T$  and  $\mathbf{V}^{1/2} = \mathbf{Q}\Lambda^{1/2}\mathbf{Q}^T$  for orthogonal  $\mathbf{Q}$ . Let  $\mathbf{y}^* = \mathbf{V}^{-1/2}\mathbf{y}$  and  $\mathbf{X}^* = \mathbf{V}^{-1/2}\mathbf{X}$ ; then  $E(\mathbf{y}^*) = \mathbf{V}^{-1/2}\mathbf{X}\beta = \mathbf{X}^*\beta$  and  $\operatorname{var}(\mathbf{y}^*) = \sigma^2\mathbf{V}^{-1/2}\mathbf{V}(\mathbf{V}^{-1/2})^T = \sigma^2\mathbf{I}$  so  $\mathbf{y}^*$  satisfies OLS. Minimize squared error:  $(\mathbf{y}^* - \mathbf{X}^*\beta)^T(\mathbf{y}^* - \mathbf{X}^*\beta) = (\mathbf{y} - \mathbf{X}\beta)^T\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\beta)$  so the normal equations are:  $[(\mathbf{X}^*)^T\mathbf{X}^*]\beta = (\mathbf{X}^*)^T\mathbf{y}^* \Rightarrow (\mathbf{X}^T\mathbf{V}^{-1}\mathbf{X})\beta = \mathbf{X}^T\mathbf{V}^{-1}\mathbf{y}$  and therefore:

$$\hat{\beta}_{GLS} = (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$$

- Unbiased:  $E(\hat{\beta}_{GLS}) = (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} E(\mathbf{y}) = \beta$
- Covariance:  $var(\hat{\beta}_{GLS}) = \sigma^2(\mathbf{X}^T\mathbf{V}^{-1}\mathbf{X})^{-1}$
- BLUE estimator for  $\beta$ ; MVUE and ML under normality
- Hat matrix:  $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{V}^{-1}$  not necessarily projection because need not be symmetric  $(\hat{\mu} = \mathbf{X}\hat{\beta}_{GLS} = \mathbf{X}(\mathbf{X}^T\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{V}^{-1}\mathbf{v})$
- Generalized projection: if  $\mathbf{u} \in C(\mathbf{X})$ , then  $\mathbf{H}\mathbf{u} = \mathbf{u}$ ; and if  $\mathbf{v} \in C(\mathbf{X})^{\perp} = \mathcal{N}(\mathbf{X}^T)$ , then  $\mathbf{H}\mathbf{v} = 0$  $(\text{since } (\mathbf{u}, \mathbf{v}) = 0)$
- Estimated variance: If rank( $\mathbf{X}$ ) = r,  $s^2 = \frac{(\mathbf{y}^* \mathbf{X}^* \hat{\beta})^T (\mathbf{y}^* \mathbf{X}^* \hat{\beta})}{n-r} = \frac{(\mathbf{y} \hat{\mu})^T \mathbf{V}^{-1} (\mathbf{y} \hat{\mu})}{n-r}$

## 3 Normal Linear Models

Normal Linear Model: In addition to  $\mu = \mathbf{X}\beta$  and  $\mathbf{V} = \text{var}(\mathbf{y}) = \sigma^2 \mathbf{I}$ , assume that  $y_i$  follow Normal distribution, that is:  $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\beta, \sigma^2 \mathbf{I})$ , or  $\mathbf{y} = \mathbf{X}\beta + \epsilon$  where  $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ .

### 3.1 Normal and Related Distributions

Multivariate Normal Denoted  $\mathbf{y} \sim \mathcal{N}(\mu, \mathbf{V})$ ; properties include:

- PDF:  $f(\mathbf{y}) = (2\pi)^{-n/2} |\mathbf{V}|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{y} \mu)^T \mathbf{V}^{-1}(\mathbf{y} \mu)\right]$
- $\bullet \ \mathbf{x} = \mathbf{A}\mathbf{y} + \mathbf{b} \Rightarrow \mathbf{x} \sim \mathcal{N}(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\mathbf{V}\mathbf{A}^T)$
- If  $y = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}$ , i.e. partitions, with  $\mathbf{V} = \begin{pmatrix} \mathbf{V}_{11} & \mathbf{V}_{12} \\ \mathbf{V}_{21} & \mathbf{V}_{22} \end{pmatrix}$ , then:

 $\mathbf{y}_1 \perp \mathbf{y}_2$  iff  $\mathbf{V}_{12} = 0$  (i.e. independence iff uncorrelated)

• As corollary, if  $\mathbf{V} = \sigma^2 \mathbf{I}$ , then  $\mathbf{y}_i \sim \mathcal{N}(\mu_i, \sigma^2)$  and  $y_i \perp y_j$  for all i, j

**Chi-Squared** Denoted  $\chi_p^2$  for p degrees of freedom:

- If  $y_i \sim \mathcal{N}(0,1)$  i.i.d, then  $\sum_{i=1}^p y_i^2 \sim \chi_p^2$
- Generally: if  $\mathbf{y} \sim \mathcal{N}(\mu, \mathbf{V})$  is *p*-dimensional, then:

$$(\mathbf{y} - \mu)^T \mathbf{V}^{-1} (\mathbf{y} - \mu) \sim \chi_p^2$$

• Moments:  $E[\chi_p^2] = p$  and  $var(\chi_p^2) = 2p$ 

**t Distribution** Denoted  $t_p$  for p degrees of freedom:

• If  $z \sim \mathcal{N}(0,1)$  and  $x \sim \chi_p^2$ ,  $x \perp z$ , then:

$$\frac{z}{\sqrt{x/p}} \sim t_p$$

- Symmetric about 0:  $E(t_p) = 0$  and  $var(t_p) = \frac{p}{p-2}$  (p > 2)
- Converges to  $\mathcal{N}(0,1)$  as  $p \to \infty$
- Suppose  $y_1, \ldots, y_n \sim \mathcal{N}(\mu, \sigma^2)$ , sample mean  $\bar{y}$  and sample variance  $s^2$ . Under null hypothesis  $H_0: \mu = \mu_0$ :

$$z = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1) \text{ and } x = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$
$$\Rightarrow \frac{z}{\sqrt{x/(n-1)}} = \frac{\bar{y} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$$

and larger values of |t| mean stronger evidence against  $H_0$ 

**F Distribution** Denoted  $F_{p,q}$  for degrees of freedom p,q:

• If  $x \sim \chi_p^2$ ,  $y \sim \chi_q^2$ ,  $x \perp y$ , then:

$$\frac{x/p}{y/q} \sim F_{p,q}$$

11

- Mean:  $E(F_{p,q}) = \frac{q}{q-2}$  (for q > 2)
- $\bullet \ (t_p)^2 = F_{1,p}$

Noncentral Distributions Used to analyze test statistics when null hypothesis does not hold.

• Chi-Squared: If  $\mathbf{y}_i \sim \mathcal{N}(\mu_i, 1)$ , then noncentrality parameter  $\lambda = \sum_{i=1}^p \mu_i$  and  $\sum_{i=1}^p y_i \sim \chi_{p,\lambda}^2$ 

Moments are:  $E(\chi^2_{p,\lambda}) = p + \lambda$ ;  $var(\chi^2_{p,\lambda}) = 2(p + 2\lambda)$ 

More generally, if p-dimensional  $\mathbf{y} \sim \mathcal{N}(\mu, \mathbf{V})$ , then:  $\mathbf{y}^T \mathbf{V}^{-1} \mathbf{y} \sim \chi_{p,\lambda}^2$  with  $\lambda = \mu^T \mathbf{V}^{-1} \mu$ 

• t Distribution: If  $z \sim \mathcal{N}(\mu, 1)$ ,  $x \sim \chi_p^2$ ,  $x \perp z$ , then:

$$\frac{z}{\sqrt{x/p}} \sim t_{p,\mu}$$

with degrees of freedom p and noncentrality  $\mu$  (from z)

Skewed in direction of sign of  $\mu$ ;  $t_{p,\mu} \to \mathcal{N}(\mu, 1)$  as  $p \to \infty$ 

• **F Distribution**: If  $x \sim \chi_{p,\lambda}^2$ ,  $y \sim \chi_q^2$ ,  $x \perp y$ , then:

$$\frac{x/p}{y/q} \sim F_{p,q,\lambda}$$

with mean  $1 + \frac{\lambda}{p}$  for large q.

Cochran's Theorem and Normal Quadratic Forms Some preliminary results:

• If  $\mathbf{y} \sim \mathcal{N}(\mu, \mathbf{V})$  and  $\mathbf{A}$  is symmetric, then:

$$\mathbf{y}^T \mathbf{A} \mathbf{y} \sim \chi^2_{r,\mu^T \mathbf{A} \mu} \Leftrightarrow \mathbf{A} \mathbf{V}$$
 is idempotent of rank  $r$ 

• Letting  $\mathbf{A} = \mathbf{P}$  for  $\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$ , and since  $\mathbf{y}/\sigma \sim \mathcal{N}(\mu/\sigma, \mathbf{I})$ :

$$\mathbf{y}^T \mathbf{P} \mathbf{y} / \sigma^2 \sim \chi^2_{r,\mu^T \mathbf{P} \mu / \sigma^2}$$

• Using standardized  $(\mathbf{y} - \mu)/\sigma$ , we have the important result:

$$\frac{1}{\sigma^2}(\mathbf{y} - \mu)^T \mathbf{P}(\mathbf{y} - \mu) \sim \chi_r^2 \Leftrightarrow \mathbf{P}$$
 is projection matrix of rank  $r$ 

which tells us: degrees of freedom = rank of  $\mathbf{P}$  = dimension of vector space projected to by  $\mathbf{P}$ 

**Cochran's Theorem.** Suppose n observations  $\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$  and  $\mathbf{P}_1, \dots, \mathbf{P}_k$  are projection matrices s.t.  $\sum_i \mathbf{P}_i = \mathbf{I}$ . Then:

- 1.  $\{\mathbf{y}^T \mathbf{P}_i \mathbf{y}\}$  are independent
- 2.  $\frac{1}{\sigma^2} \mathbf{y}^T \mathbf{P}_i \mathbf{y} \sim \chi^2_{r_i, \lambda_i}$ , with  $r_i = \text{rank}(\mathbf{P}_i)$  and  $\lambda_i = \frac{1}{\sigma^2} \mu^T \mathbf{P}_i \mu$

#### 3.2 Significance Tests for Normal Linear Model

Cochran's Theorem is useful because it can be applied to prove more or less any significant test result for normal linear models.

Introduction: One-Way ANOVA  $E(y_{ij}) = \beta_0 + \beta_i$ , with baseline constraint. Consider  $H_0: \mu_1 = \cdots = \mu_c$ , or equivalently  $H_0: \beta_1 = \cdots = \beta_c$ . Under  $H_0$ , we have  $E(y_{ij}) = \beta_0$ , or the null model. We use decomposition:

$$\mathbf{I} = \mathbf{P}_0 + (\mathbf{P}_X - \mathbf{P}_0) + (\mathbf{I} - \mathbf{P}_X)$$

with  $\mathbf{P}_X$  having blocks  $\frac{1}{n_i}\mathbf{1}_{n_i}\mathbf{1}_{n_i}^T$  and  $\mathbf{P}_0 = \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T$ . Applying Cochran's Theorem,  $\mathbf{P}_X - \mathbf{P}_0$  and  $\mathbf{I} - \mathbf{P}_X$  are both projection matrices and are perpendicular, so:

$$\frac{1}{\sigma^2} \mathbf{y}^T (\mathbf{P}_X - \mathbf{P}_0) \mathbf{y} = \frac{1}{\sigma^2} \sum_{i=1}^c n_i (\bar{y}_i - \bar{y})^2 \sim \chi_{c-1,\lambda}^2$$

$$\frac{1}{\sigma^2} \mathbf{y}^T (\mathbf{I} - \mathbf{P}_X) \mathbf{y} = \frac{1}{\sigma^2} \sum_{i=1}^c \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 \sim \chi_{n-c}$$

where  $\lambda = \frac{1}{\sigma^2} \mu^T (\mathbf{P}_X - \mathbf{P}_0) \mu = \frac{1}{\sigma^2} \sum_i n_i (\mu_i - \bar{\mu})^2$  and the quadratic forms are independent. Thus, we can create an F test:

$$F = \frac{\sum_{i} n_{i}(\bar{y}_{i} - \bar{y})^{2}/(c - 1)}{\sum_{i} \sum_{j} (y_{ij} - \bar{y}_{i})^{2}/(n - c)} \sim F_{c-1, n-c, \lambda}$$

Under  $H_0$ , we have  $\lambda = 0$ ,  $df_1 = c - 1$ ,  $df_2 = n - c$ , so expected value  $\frac{n-c}{n-c-2}$ , and larger F values are stronger evidence against  $H_0$ .

$$p
-value = P(F_{c-1,n-c} > F_{obs})$$

| Source | df  | SS                                                       | $F_{obs}$                                                                                                                         |
|--------|-----|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Mean   | 1   | $nar{y}^2$                                               |                                                                                                                                   |
| Groups | c-1 | $\sum_{i=1}^{c} (\bar{y}_i - \bar{y})^2$                 | $\frac{\sum_{i} n_{i}(\bar{y}_{i}-\bar{y})^{2}/(c-1)}{\sum_{i} \sum_{j} (y_{ij}-\bar{y}_{i})^{2}/(n-c)} \sim F_{c-1,n-c,\lambda}$ |
| Error  | n-c | $\sum_{i=1}^{c} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$ |                                                                                                                                   |
| Total  | n   | $\sum_{i=1}^{c} \sum_{j=1}^{n_i} y_{ij}^2$               |                                                                                                                                   |

Comparing Nested Models Let simpler model be  $M_0$  with  $p_0$  parameters, projection  $\mathbf{P}_0$ , and complicated model be  $M_1$  with  $p_1$  parameters, projection  $\mathbf{P}_1$ . Decomposition yields  $\mathbf{I} = \mathbf{P}_0 + (\mathbf{P}_1 - \mathbf{P}_0) + (\mathbf{I} - \mathbf{P}_1)$  with the sum of squares decomposition:

$$\mathbf{y}^T \mathbf{y} = \mathbf{y}^T \mathbf{P}_0 \mathbf{y} + \mathbf{y}^T (\mathbf{P}_1 - \mathbf{P}_0) \mathbf{y} + \mathbf{y}^T (\mathbf{I} - \mathbf{P}_1) \mathbf{y}$$

 $\mathbf{y}^T(\mathbf{P}_1 - \mathbf{P}_0)\mathbf{y} = \mathbf{y}^T(\mathbf{I} - \mathbf{P}_0)\mathbf{y} - \mathbf{y}^T(\mathbf{I} - \mathbf{P}_1)\mathbf{y} = \sum_i (y_i - \hat{\mu}_{i0})^2 - \sum_i (y_i - \hat{\mu}_{i1})^2 = SSE_0 - SSE_1 = \sum_i (\hat{\mu}_{i1} - \hat{\mu}_{i0})^2 = SSR(M_1|M_0).$  Similarly,  $\mathbf{y}^T(\mathbf{I} - \mathbf{P}_1)\mathbf{y} = \sum_i (y_i - \hat{\mu}_{i1})^2 = SSE_1.$   $\mathbf{I} - \mathbf{P}_1$  has df  $n - p_1$  while  $\mathbf{P}_1 - \mathbf{P}_0$  has df  $p_1 - p_0$ . Thus, we have:

$$\begin{split} \frac{1}{\sigma^2} \mathbf{y}^T (\mathbf{P}_1 - \mathbf{P}_0) \mathbf{y} &= \frac{SSE_0 - SSE_1}{\sigma^2} \sim \chi^2_{p_1 - p_0, \lambda} \\ \frac{1}{\sigma^2} \mathbf{y}^T (\mathbf{I} - \mathbf{P}_1) \mathbf{y} &= \frac{SSE_1}{\sigma^2} \sim \chi^2_{n - p_1} \end{split}$$

with  $\lambda = \frac{1}{\sigma^2} \mu^T (\mathbf{P}_1 - \mathbf{P}_0) \mu = \frac{\|\mu_1 - \mu_0\|^2}{\sigma^2}$  which is 0 under  $H_0$ . Thus, under  $H_0$ :

$$F = \frac{(SSE_0 - SSE_1)/(p_1 - p_0)}{SSE_1/(n - p_1)} = \frac{SSR(M_1|M_0)/(p_1 - p_0)}{s^2} \sim F_{p_1 - p_0, n - p_1, \lambda}$$

where  $s^2$  is the  $\sigma^2$  estimator under  $M_1$ .

**Example:** All Effects Equal 0. Let  $M_1: E(y_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1}$  and  $M_0: E(y_i) = \beta_0$  be the null model. Consider  $H_0: \beta_1 = \dots = \beta_{p-1} = 0$ . For  $M_0$ , we have  $\mathbf{P}_0 = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T$  and the SS decomposition is:

$$\mathbf{y}^T \mathbf{y} = \mathbf{y}^T \mathbf{P}_0 \mathbf{y}^T + \mathbf{y}^T (\mathbf{P}_1 - \mathbf{P}_0) \mathbf{y} + \mathbf{y}^T (\mathbf{I} - \mathbf{P}_1) \mathbf{y}$$

with the same ANOVA table as in the one-way layout.

Non-null Behavior of F Statistic. How large can we expect  $SSE_0 - SSE_1 = \|\hat{\mu}_1 - \hat{\mu}_0\|^2$  to be under non-null? Let  $\mu_1$  be true mean under  $M_1$ , and  $\mu_0$  be projection of  $\mu_1$  onto  $M_0$ . Then the numerator has expectation:

$$E\|\hat{\mu}_{1} - \hat{\mu}_{0}\|^{2} = E[\mathbf{y}^{T}(\mathbf{P}_{1} - \mathbf{P}_{0})\mathbf{y}] = \operatorname{trace}[(\mathbf{P}_{1} - \mathbf{P}_{0})\sigma^{2}\mathbf{I}] + \mu_{1}^{T}(\mathbf{P}_{1} - \mathbf{P}_{0})\mu_{1} = \sigma^{2}(p_{1} - p_{0}) + \|\mu_{1} - \mu_{0}\|^{2}$$

$$E\left[\frac{\|\hat{\mu}_{1} - \hat{\mu}_{0}\|^{2}}{p_{1} - p_{0}}\right] = \sigma^{2} + \frac{\|\mu_{1} - \mu_{0}\|^{2}}{p_{1} - p_{0}}$$

while the denominator has expectation:

$$E\|\mathbf{y} - \hat{\mu}_1\|^2 = E[\mathbf{y}^T(\mathbf{I} - \mathbf{P}_1)\mathbf{y}] = \operatorname{trace}[(\mathbf{I} - \mathbf{P}_1)\sigma^2\mathbf{I}] + \mu_1^T(\mathbf{I} - \mathbf{P}_1)\mu_1 = (n - p_1)\sigma^2$$
$$E\left[\frac{\|\mathbf{y} - \hat{\mu}\|^2}{n - p_1}\right] = \sigma^2$$

regardless of whether  $H_0$  is true.

**Power.** The *power* of the F test is defined as:

Power = 
$$P(F_{p_1-p_0,n-p_1,\lambda} > F_{p_1-p_0,n-p_1}(0.95))$$

i.e. the probability that the nocentral F rv exceeds the F statistic under the null  $H_0$ .

Testing General Linear Hypothesis  $H_0: \Lambda \beta = 0$  for  $l \times p$  matrix  $\Lambda$ ; l independent constraints on  $\beta$ . Properties include:

- Estimator  $\Lambda \hat{\beta}$  is BLUE (Gauss-Markov)
- $\Lambda \hat{\beta} \sim \mathcal{N}[\Lambda \beta, \sigma^2 \Lambda (\mathbf{X}^T \mathbf{X})^{-1} \Lambda^T]$
- $(\Lambda \hat{\beta} 0)^T [\sigma^2 \Lambda (\mathbf{X}^T \mathbf{X})^{-1} \Lambda^T]^{-1} (\Lambda \hat{\beta} 0) \sim \chi_l^2$
- $F = \frac{(\Lambda \hat{\beta})^T [\Lambda (\mathbf{X}^T \mathbf{X})^{-1} \Lambda^T]^{-1} (\Lambda \hat{\beta})/l}{SSE/(n-p)} \sim F_{l,n-p} \text{ since } SSE/\sigma^2 \sim \chi^2_{n-p}$
- $\Lambda\beta = 0$  is special case  $M_0$  of full model; let **W** be matrix s.t.  $C(\mathbf{W}) \perp C(\Lambda)$ ; then  $\beta = \mathbf{W}\gamma$ , so  $E(\mathbf{y}) = \mathbf{X}\beta = \mathbf{X}\mathbf{W}\gamma = \mathbf{X}_0\gamma$  for simpler  $\mathbf{X}_0 = \mathbf{X}\mathbf{W}$ .

**Example: Single Parameter Equals 0.** For testing  $H_0: \beta_j = 0$ , let  $\Lambda = \lambda = (0, 0, \dots, 0, 1, 0, \dots, 0)$  in  $j^{th}$  slot. This yields:

$$F = \frac{(SSE_0 - SSE_1)/1}{SSE_1/(n-p)} = \frac{\hat{\beta}_j^2}{(SE_j)^2} \sim F_{1,n-p}$$

#### 3.3 Confidence Intervals for Normal Linear Models

Confidence intervals yield more information than significance tests because they provide the entire range of plausible values. We obtain confidence intervals by *inverting significance tests*.

For Parameter Invert test of  $H_0: \beta_j = \beta_{j0}$ , yielding test statistic:

$$t = \frac{\hat{\beta}_j - \beta_{j0}}{SE_j} \sim t_{n-p}$$

where  $SE_j = \sqrt{[s^2(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}$  of estimated covariance matrix of  $\hat{\beta}$ . Residuals uncorrelated with  $\hat{\beta}$  since error space/model space, and  $s^2$  function of residuals, so  $\hat{\beta} \perp s^2$  and numerator/denominator are independent.

 $100(1-\alpha)\%$  CI has p-value  $> \alpha$ , or  $|t| < t_{\alpha/2,n-p}$ , so that:

$$\beta_{j0} \in \hat{\beta}_j \pm t_{\alpha/2, n-p}(SE_j)$$

For True Mean To get CI for fitted value (i.e. true mean), note if  $\hat{\mu} = \mathbf{x}_0 \hat{\beta}$ , then  $\operatorname{var}(\hat{\mu}) = \operatorname{var}(\mathbf{x}_0 \hat{\beta}) = \sigma^2 \mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T$  so that when we standardize,

$$z = \frac{\mathbf{x}_0 \hat{\beta} - \mathbf{x}_0 \beta}{\sigma \sqrt{\mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}} \sim \mathcal{N}(0, 1)$$

$$\Rightarrow t = \frac{\mathbf{x}_0 \hat{\beta} - \mathbf{x}_0 \beta}{s \sqrt{\mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}} \sim t_{n-p}$$

since  $(n-p)s^2/\sigma^2 \sim \chi^2_{n-p}$  by Cochran. The resulting CI for  $\mu$  is:

$$\mu \in \mathbf{x}_0 \hat{\beta} \pm t_{\alpha/2,n-p} s \sqrt{\mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}$$

Note if  $\mathbf{x}_0 = \mathbf{x}_i$  for some obs *i*, then the square root term is just  $h_{ii}$ .

For Future Prediction At given  $\mathbf{x}_0$ , suppose predict future y;  $y = \mathbf{x}_0 \beta + \epsilon$ ,  $\epsilon \sim \mathcal{N}(0, \sigma^2)$ . From fitting,  $y = \mathbf{x}_0 \hat{\beta} + e$  where  $e = y - \hat{\mu}$ , so that:

$$\operatorname{var}(e) = \operatorname{var}(y - \hat{\mu}) = \operatorname{var}(y) + \operatorname{var}(\hat{\mu}) = \sigma^2 (1 + \mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T)$$

since  $y \perp y_1, \ldots, y_n$  used for  $\hat{\mu}$ . Thus:

$$\frac{y - \hat{\mu}}{s\sqrt{1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim t_{n-p}$$

so the  $100(1-\alpha)\%$  prediction interval is:

$$y \in \hat{\mu} \pm t_{\alpha/2, n-p} s \sqrt{1 + \mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}$$

## 4 Generalized Linear Models: Fitting and Inference

Generalized Linear Model: 1) Non-normal y; 2) Non-identity g.

### 4.1 Exponential Dispersion Family

**Properties** For  $y_i$  from EDF:

- PDF:  $f(y_i; \theta_i, \phi) = \exp\left[\frac{y_i \theta_i b(\theta_i)}{a(\phi)} c(y_i, \phi)\right]$
- $\theta_i$  is natural parameter;  $\phi$  is dispersion parameter
- Generally,  $a(\phi) = 1$  (natural exponential family);  $a(\phi)\phi/w_i$  for weight  $w_i$  known (i.e. binomial)
- $\mu_i = E(y_i) = b'(\theta_i)$  and  $var(y_i) = b''(\theta_i)a(\phi)$  (using exp. score = 0 and second partials of l results)

Poisson, Binomial, Normal, Gamma All in EDF:

• Poisson:  $f(y_i; \mu_i) = \frac{\mu_i^{y_i} e^{-\mu_i}}{y_i!} = \exp[y_i \log \mu_i - \mu_i - \log(y_i!)]$  so we have:

$$\theta_i = \log(\mu_i), b(\theta_i) = \exp(\theta_i), a(\phi) = 1$$

• Binomial: Let  $n_i y_i \sim \text{Bin}(n_i, \pi_i)$  so  $y_i$  is sample proportion.

$$f(y_i; n_i, \pi_i) = \binom{n_i}{n_i y_i} \pi_i^{n_i y_i} (1 - \pi_i)^{n_i - n_i y_i} = \exp\left[\frac{y_i \theta_i - \log(1 - \exp(\theta_i))}{1/n_i} + \log\binom{n_i}{n_i y_i}\right]$$

where  $\theta_i = \log[\pi_i/(1-\pi_i)] = \log it(\pi_i \text{ and } b(\theta_i) = \log[1+\exp(\theta_i)], \ a(\phi) = 1/n_i$ 

• Normal:  $f(y_i; \mu_i, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y_i - \mu_i)^2}{2\sigma^2}\right] = \exp\left[\frac{y_i \mu_i - \mu_i^2/2}{\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2) - \frac{y_i^2}{2\sigma^2}\right]$ :

$$\theta_i = \mu_i, b(\theta_i) = \frac{1}{2}\theta_i^2, a(\phi) = \sigma^2$$

$$\theta = -\frac{1}{\mu}, b(\theta) = -\log(-\theta), \phi = \frac{1}{k}$$

Canonical Link  $g: \mu_i \mapsto \theta_i$  results in direct relationship  $\theta_i = \eta_i = \sum_j \beta_j x_{ij}$  (good things: Newton-Raphson = Fisher scoring, always concave, sufficient statistics = expected values)

#### 4.2 Likelihood Equations and Asymptotics

Sufficient Statistics  $l(\beta) = \sum_i l_i = \sum_i \frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + \sum_i c(y_i, \phi)$ . When g is canonical link,  $\theta_i = \sum_j \beta_j x_{ij}$ , so when  $a(\phi)$  is constant, the kernel is:

$$\sum_{i} y_i (\sum_{j} \beta_j x_{ij}) = \sum_{j} \beta_j (\sum_{i} y_i x_{ij})$$

so the sufficient statistics are  $\sum_{i} y_i x_{ij}$  for all  $j = 1, \dots, p$ 

**Likelihood Equations** For ML, want  $\frac{\partial l(\beta)}{\partial \beta_i} = 0$  for all j; using chain rule:

$$\frac{\partial l_i}{\partial \beta_j} = \frac{\partial l_i}{\partial \theta_i} \frac{\partial \theta_i}{\partial \mu_i} \frac{\partial \mu_i}{\partial \eta_i} \frac{\partial \eta_i}{\partial \beta_j}$$

$$\frac{\partial l_i}{\partial \theta_i} = \frac{y_i - \mu_i}{a(\phi)}, \frac{\partial \mu_i}{\partial \theta_i} = b''(\theta_i) = \frac{\text{var}(y_i)}{a(\phi)}, \frac{\partial \eta_i}{\partial \beta_j} = x_{ij}$$

$$\Rightarrow \frac{\partial l(\beta)}{\partial \beta_j} = \sum_i \frac{\partial l_i}{\partial \beta_j} = \left[ \sum_i \frac{(y_i - \mu_i)x_{ij}}{\text{var}(y_i)} \frac{\partial \mu_i}{\partial \eta_i} = 0 \right]$$

Let  $\mathbf{D} = \operatorname{diag}\left(\frac{\partial \mu_i}{\partial \eta_i}\right)$ , and  $\mathbf{V}$  be covariance matrix. Then:

$$\mathbf{X}^T \mathbf{D} \mathbf{V}^{-1} (\mathbf{y} - \mu) = 0$$

Mean-Variance Relation If  $y_i$  in EDF, then relation between mean and variance  $var(y_i) = v(\mu_i)$  completely determines distribution.

• Poisson:  $v(\mu_i) = \mu_i$ 

• Binomial:  $v(\mu_i) = \frac{\mu_i(1-\mu_i)}{n_i}$ 

• Normal:  $v(\mu_i) = \sigma^2$  (constant)

• Gamma:  $v(\mu_i) = \frac{\mu_i^2}{k}$ 

**Asymptotics of Parameter Estimators** By ML properties, for large  $n \ \hat{\beta}$  is: 1) efficient; 2) approximately Normal. Moreover, covariance matrix of  $\hat{\beta}$  is  $var(\hat{\beta}) = \mathcal{J}^{-1}$ , the Fisher information matrix:

$$\mathcal{J} = \left(-E\left[\frac{\partial^2 l(\beta)}{\partial \beta_i \partial \beta_j}\right]\right)$$

Using the ML second derivative result,

$$-E\left(\frac{\partial^{2} l_{i}}{\partial \beta_{j} \partial \beta_{k}}\right) = E\left[\left(\frac{\partial l_{i}}{\partial \beta_{j}}\right) \left(\frac{\partial l_{i}}{\partial \beta_{k}}\right)\right] = \frac{x_{ij} x_{ik}}{\text{var}(y_{i})} \left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}$$

$$\Rightarrow -E\left[\frac{\partial^{2} l(\beta)}{\partial \beta_{i} \partial \beta_{j}}\right] = \sum_{i} \frac{x_{ij} x_{ik}}{\text{var}(y_{i})} \left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}$$

so let  $\mathbf{W} = \operatorname{diag}\left(\frac{(\partial \mu_i/\partial \eta_i)^2}{\operatorname{var}(y_i)}\right)$ , then we have:  $\mathcal{J} = \mathbf{X}^T \mathbf{W} \mathbf{X}$ 

$$\hat{\beta} \sim \mathcal{N}[\beta, (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1}]$$

**Asymptotics of Fitted Values** Note that  $\hat{\eta} = \mathbf{X}\hat{\beta} \Rightarrow \text{var}(\hat{\eta}) = \mathbf{X}\text{var}(\hat{\beta})\mathbf{X}^T \approx \mathbf{X}(\mathbf{X}^T\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^T$ . We want  $\text{var}(\hat{\mu}, \text{ and we can use delta method:}$ 

$$h(y) - h(\mu) \approx h'(\mu)(y - \mu) \Rightarrow \text{var}[h(y)] \approx [h'(\mu)]^2 \text{var}(y)$$

In the vector vase,  $\operatorname{var}[\mathbf{h}(\mathbf{y})] \approx \left(\frac{\partial \mathbf{h}}{\partial \mu}\right) \mathbf{V} \left(\frac{\partial \mathbf{h}}{\partial \mu}\right)^T$  for the Jacobian  $\left(\frac{\partial \mathbf{h}}{\partial \mu}\right)$ . So using  $\mathbf{D} = \operatorname{diag}(\partial \mu_i / \partial \eta_i)$ :

$$\operatorname{var}(\hat{\mu}) \approx \mathbf{D} \mathbf{X} (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{D}$$

**Model Misspecification** Even if we specified wrong distribution for  $\mathbf{y}$ , as long as we used EDF:  $\hat{\beta} \xrightarrow{p} \beta$  as long as linear predictor and link are correct.

#### 4.3 GLM Parameter Inference: LRT, Wald, Score

In order to: 1) say if a parameter estimate is significantly non-zero; 2) establish confidence intervals for the true parameters, we need tests of significance. There are three standard methods:

**Likelihood-Ratio Test** Let  $H_0: \beta_j = 0$ . Then define  $l_0 = \max_{\beta} l(\beta)|_{\beta_j = 0}$  and  $l_1 = \max_{\beta} l(\beta)$ . Then as  $n \to \infty$ :

 $-2(l_0 - l_1) \sim \chi_1^2$ 

This can be extended to multiple parameters  $\beta=(\beta_0,\beta_1)$  and  $H_0:\beta_0=0$  leads to  $\chi^2_{|\beta_0|}$  and general linear hypothesis  $H_0:\Lambda\beta=0$  leads to  $\chi^2_l$  where  $\Lambda$  adds l constraints.

Wald Test Recall:  $SE_{\hat{\beta}} \approx \sqrt{(\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1}}$  so estimating that using:  $\hat{SE}_{\hat{\beta}} = \sqrt{(\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})^{-1}}$  where  $\hat{\mathbf{W}}$  is  $\mathbf{W} = \frac{(\partial \mu_i)/\partial \eta_i)^2}{\text{var}(y_i)}$  evaluated at  $\hat{\eta_i} = \sum_j \hat{\beta}_j x_{ij}$ . To test  $H_0: \beta_j = \beta_{j0}$ , using  $\hat{SE}_j = (\hat{SE}_{\hat{\beta}})_{jj}$ :

$$z = \frac{\hat{\beta}_j - \beta_{j0}}{\hat{SE}_j} \sim \mathcal{N}(0, 1)$$

$$z^2 \sim \chi_1^2$$

For multiple parameters  $\beta = (\beta_0, \beta_1)$ , testing  $H_0: \beta_0 = 0$ :

$$z^2 = \hat{\beta}_0^T [\hat{\text{var}}(\hat{\beta})]_{\beta_0}^{-1} \hat{\beta}_0 \sim \chi_{|\beta_0|}^2$$

where  $[\hat{\mathbf{var}}(\hat{\boldsymbol{\beta}})]_{\beta_0} = (\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})$  using only the rows/columns corresponding to  $\beta_0$ .

Problems: 1) Useless at boundary; 2) Depends on scale

Score Test Testing  $H_0: \beta = \beta_0$ :

$$z^2 = \frac{[\partial l(\beta)/\partial \beta_0]^2}{-E[\partial^2 l(\beta)/\partial \beta_0^2]} \sim \chi_1^2$$

where the derivatives are evaluated at  $\beta = \beta_0$ .

Confidence Intervals We again get CI by inverting the test.

- Likelihood-Ratio Test: For  $H_0: \beta = \beta_0: \beta_0 \in \{\beta: -2[l(\beta) l(\hat{\beta})] > \chi_1^2(\alpha)\}$
- Wald Test:  $\frac{|\hat{\beta} \beta_0|}{SE} < z_{\alpha/2} \Rightarrow \beta_0 \in \hat{\beta} \pm z_{\alpha/2}(SE)$
- Score Test: Depends on likelihood; generally close to Wald interval

When n small or  $\hat{\beta}$  very non-normal (i.e. Wald and LRT CI differ greatly) then Wald fails, so use LRT.

**Profile Likelihood** For multiparameter models, i.e.  $\beta = (\beta_0, \psi)$ , best CI is obtained by maximizing  $l(\beta)$  at each possible value of  $\beta_0$ . That is: 1) plug in  $\beta_0$  into  $l(\beta)$ ; 2) maximize  $l(\beta)$  over all other  $\psi$ , yielding maximum nuisance parameters  $\hat{\psi}(\beta_0)$ ; 3) use the *profile log-likelihood function*  $l(\beta_0, \hat{\psi}(\beta_0))$ . The *profile likelihood CI* for true  $\beta_0$  is:

$$-2[l(\beta_0, \hat{\psi}(\beta_0)) - l(\hat{\beta}_0, \hat{\psi})] < \chi_1^2(\alpha)$$

### 4.4 Deviance and Model Checking/Comparison

For normal linear models, we used Cochran's Theorem and F statistics to tell whether model fit well (nested models). Can't do that for GLMs, so we use deviance (LRT).

**Deviance** Compare log-likelihood of model with saturated model; let  $l(\mu; \mathbf{y})$  be log-likelihood in terms of  $\mu = g^{-1}(\theta)$ , then  $l(\hat{\mu}; \mathbf{y})$  is maximum of log-likelihood under model,  $l(\mathbf{y}; \mathbf{y})$  is log-likelihood under saturated model (separate parameter for each obs  $\tilde{\mu} = \mathbf{y}$ ).

Likelihood-ratio statistic:  $-2[l(\hat{\mu}; \mathbf{y}) - l(\mathbf{y}; \mathbf{y})] = 2\sum_{i} \frac{y_i(\tilde{\theta} - \hat{\theta}) - b(\tilde{\theta}) + b(\hat{\theta})}{a(\phi)}$ 

Generally,  $a(\phi) = \phi/w_i$ , so then:

$$\mathbf{Deviance}\left[D(\mathbf{y};\hat{\mu}) = 2\sum_i w_i [y_i(\tilde{\theta} - \hat{\theta}) - b(\tilde{\theta}) + b(\hat{\theta})]\right]$$

and:  $-2[l(\hat{\mu}; \mathbf{y}) - l(\mathbf{y}; \mathbf{y})] = \frac{D(\mathbf{y}; \hat{\mu})}{\phi}$  (so LRT statistic = scaled deviance)

• Poisson GLM: Using canonical link,  $\hat{\theta}_i = \log(\hat{\mu}_i)$  and  $b(\theta_i) = \exp(\theta_i)$ , with  $w_i = 1$  so:

$$D(\mathbf{y}; \hat{\mu}) = 2 \sum_{i} [y_i \log(y_i/\hat{\mu}_i) - y_i + \hat{\mu}_i]$$

If there is intercept term, likelihood equations yield  $\sum_i y_i = \sum_i \hat{\mu}_i$ :

$$D(\mathbf{y}; \hat{\mu}) = 2\sum_{i} y_i \log(y_i/\hat{\mu}_i)$$

• Normal GLM:  $D(\mathbf{y}; \hat{\mu}) = 2\sum_i \left[ y_i(y_i - \hat{\mu}_i) - \frac{\mathbf{y}_i^2}{2} + \frac{\hat{\mu}_i^2}{2} \right] = \sum_i (y_i - \hat{\mu}_i)^2 = SSE$ 

18

### Maximize likelihood $\Leftrightarrow$ Minimize deviance

**Model Comparison** In normal linear models, we used SSE comparisons to compare models. Generalize to GLMS:

1. **Likelihood-Ratio Test**: Suppose  $M_0$  nested in  $M_1$ , so  $l(\hat{\mu}_1; \mathbf{y}) \ge l(\hat{\mu}_0; \mathbf{y})$ . Consider likelihood-ratio test of  $H_0: M_0$  holds:

$$-2[l(\hat{\mu}_0; \mathbf{y}) - l(\hat{\mu}_1; \mathbf{y})] = -2[l(\hat{\mu}_0; \mathbf{y}) - l(\mathbf{y}; \mathbf{y})] + 2[l(\hat{\mu}_1; \mathbf{y}) - l(\mathbf{y}; \mathbf{y})] = D(\mathbf{y}; \hat{\mu}_0) - D(\mathbf{y}; \hat{\mu}_1)$$

if  $\phi = 1$ , as in Poisson/Binomial, which has deviance form, so:

$$G^{2}(M_{0}|M_{1}) = D(\mathbf{y}; \hat{\mu}_{0}) - D(\mathbf{y}; \hat{\mu}_{1}) = 2\sum_{i} w_{i} [y_{i}(\hat{\theta}_{1i} - \hat{\theta}_{0i}) - b(\hat{\theta}_{1i} + b(\hat{\theta}_{0i}))]$$

$$G^{2}(M_{0}|M_{1}) = D(\mathbf{y};\hat{\mu}_{0}) - D(\mathbf{y};\hat{\mu}_{1}) \sim \chi_{p_{1}-p_{0}}$$

under the null hypothesis ( $M_0$  holds)

Using the fact that deviance  $\approx$  LRT statistic so  $D(\mathbf{y}; \hat{\mu}_1) \sim \chi^2_{n-p_1}$ , we have:

$$\frac{[D(M_0) - D(M_1)]/(p_1 - p_0)}{D(M_1)/(n - p_1)} \sim F_{p_1 - p_0, n - p_1}$$

2. Score/Pearson Statistics: For GLM with  $var(y_i) = v(\mu_i)$  and  $\phi = 1$ :

$$X^2 = \sum_{i} \frac{(y_i - \hat{\mu}_i)^2}{v(\hat{\mu})}$$

This is the generalized Pearson chi-squared statistic; original was  $X^2 = \sum_i (\text{obs-fitted})^2/\text{fitted}$  which holds when GLM is Poisson  $(v(\hat{\mu}) = \hat{\mu})$ . For testing nested  $M_0$  in  $M_1$ :

$$X^{2}(M_{0}|M_{1}) = \sum_{i} \frac{(\hat{\mu}_{1i} - \hat{\mu}_{0i})^{2}}{v(\hat{\mu}_{0i})} \sim \chi^{2}_{p_{1} - p_{0}}$$

which is quadratic approximation to  $G(M_0|M_1)$ , the deviance statistic. Often has better behavior asymptotically.

Asymptotics of Residuals Unlike in LM case where  $\mathbf{y} = \hat{\mu} + (\mathbf{y} - \hat{\mu})$  yielded orthogonal decomposition, in GLM Case,  $\mu = g^{-1}(\eta)$  need not constitute vector space, so projections/orthogonality don't hold. We suppose that  $\hat{\mu}$  and residuals are asymptotically uncorrelated. Using  $\mathbf{W}$  and  $\mathbf{D}$  as before, we have:  $\mathbf{V} = \text{var}(\mathbf{y}) = \mathbf{D}\mathbf{W}^{-1}\mathbf{D}$ , and  $\text{var}(\mathbf{y}) \approx \text{var}(\hat{\mu}) + \text{var}(\mathbf{y} - \hat{\mu})$  under asymptotic uncorrelatedness. Thus,

$$\operatorname{var}(\mathbf{y} - \hat{\mu}) \approx \mathbf{V} - \operatorname{var}(\hat{\mu}) \approx \mathbf{D}\mathbf{W}^{-1}\mathbf{D} - \mathbf{D}\mathbf{X}(\mathbf{X}^{T}\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{D}$$

$$\Rightarrow \operatorname{var}(\mathbf{y} - \hat{\mu}) \approx \mathbf{D}\mathbf{W}^{-1/2}[\mathbf{I} - \mathbf{W}^{1/2}\mathbf{X}(\mathbf{X}^{T}\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{W}^{1/2}]\mathbf{W}^{-1/2}\mathbf{D} = \mathbf{V}^{1/2}[\mathbf{I} - \mathbf{H}_{W}]\mathbf{V}^{1/2}$$
where  $\mathbf{H}_{W} = \mathbf{W}^{1/2}\mathbf{X}(\mathbf{X}^{T}\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{W}^{1/2}$  is projection matrix (hat matrix) for  $V^{-1/2}(\mathbf{y} - \mu)$ .

Pearson, Deviance, Standardized Residuals Three kinds of residuals for GLMS:

1. Pearson residual  $e_i = \frac{y_i - \hat{\mu}_i}{\sqrt{v(\hat{\mu}_i)}}$ 

Note that:  $X^2 = \sum_i e_i^2 \sim \chi_1^2$  for Poisson and Binomial; for Poisson,  $e_i = (y_i - \hat{\mu}_i)/\sqrt{\hat{\mu}_i}$ , whereas for Binomial,  $e_i = (y_i - \hat{\pi}_i)/\sqrt{\hat{\pi}_i(1 - \hat{\pi}_i)/n_i}$ .

- 2. Deviance residual  $d_i = 2w_i[y_i(\tilde{\theta}_i \hat{\theta}_i) b(\tilde{\theta}_i) + b(\hat{\theta}_i)]$  so that  $D(\mathbf{y}; \hat{\mu}) = \sum_i d_i$ . Then: Deviance residual:  $\sqrt{d_i} \times \text{sign}(y_i \hat{\mu}_i)$
- 3. Standardized residual: Pearson/deviance residuals have variance < 1 because compare  $y_i$  to  $\hat{\mu}_i$  rather than  $\mu_i$ . Using generalized hat matrix  $\mathbf{H}_W = \mathbf{W}^{1/2}\mathbf{X}(\mathbf{X}^T\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{W}^{1/2}$  and  $\hat{h}_{ii} = (\hat{H}_W)_{ii}$ , we have:

Standardized residual: 
$$r_i = \frac{e_i}{\sqrt{1 - \hat{h}_{ii}}}$$

### 4.5 GLM Fitting

Unlike normal equations, likelihood equations are nonlinear in  $\hat{\beta}$ , so need iterative schemes.

Newton-Raphson Use quadratic approximations to iterate solution to maximum:

$$\mathbf{u} = \left(\frac{\partial l(\beta)}{\partial \beta_1}, \dots, \frac{\partial l(\beta)}{\partial \beta_p}\right)$$

$$\mathbf{H} = \left(\frac{\partial^2 l(\beta)}{\partial \beta_i \partial \beta_j}\right)$$

where **H** is the Hessian matrix, or observed information. Let  $\mathbf{u}^{(t)}$ ,  $\mathbf{H}^{(t)}$  be score/Hessian evaluated at  $\beta^{(t)}$ . Using Taylor:

$$l(\beta) \approx l(\beta^{(t)}) + (\mathbf{u}^{(t)})^T (\beta - \beta^{(t)}) + \frac{1}{2} (\beta - \beta^{(t)})^T \mathbf{H}^{(t)} (\beta - \beta^{(t)}) \Rightarrow \frac{\partial l(\beta)}{\partial \beta} \approx \mathbf{u}^{(t)} + \mathbf{H}^{(t)} (\beta - \beta^{(t)}) = 0$$
$$\Rightarrow \boxed{\beta^{(t+1)} = \beta^{(t)} - (\mathbf{H}^{(t)})^{-1} \mathbf{u}^{(t)}}$$

Fisher Scoring Uses expected information, not observed information. Recall:

$$\mathcal{J} = -E\left[\frac{\partial^2 l(\beta)}{\partial \beta_i \partial \beta_j}\right] = \mathbf{X}^T \mathbf{W} \mathbf{X}$$

so let  $\mathcal{J}^{(t)}$  be  $\mathcal{J}$  evaluated at  $\beta^{(t)}$ ;  $\mathcal{J}^{(t)} = \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{W}$ . Equivalently to Newton-Raphson:

$$\beta^{(t+1)} = \beta^{(t)} + (\mathcal{J}^{(t)})^{-1} \mathbf{u}^{(t)}$$

**Example: Binomial Parameter.** Consider single set of binomial observation,  $ny \sim \text{Bin}(n,\pi)$  and consider estimating the maximum parameter  $\hat{\pi}$  (rather than  $\beta$ , as usual). Then  $l(\pi) = ny \log \pi + (n-ny) \log (1-\pi) + \log \binom{n}{ny}$ . Thus, the derivatives are:  $u = \frac{\partial l(\pi)}{\partial \pi} = \frac{ny-n\pi}{\pi(1-\pi)}$  and  $H = -\left[\frac{ny}{\pi^2} + \frac{n-ny}{(1-\pi)^2}\right] \Rightarrow E[H] = \frac{n}{\pi(1-\pi)}$  So we can use:

- 1. Newton-Raphson:  $\pi^{(t+1)} = \pi^{(t)} (H^{(t)})^{-1}u^{(t)}$ , which does do the right thing
- 2. Fisher Scoring:  $\pi^{(t+1)} = \pi^{(t)} + \left[\frac{n}{\pi^{(t)}(1-\pi^{(t)})}\right]^{-1} \frac{ny-n\pi^{(t)}}{\pi^{(t)}(1-\pi^{(t)})} = \pi^{(t)} + (y-\pi^{(t)}) = y$  so achieved in one step.

Fisher Scoring = IRLS Fisher scoring is equivalent to iteratively reweighted least squares on the adjusted response,  $z_i = \sum j x_{ij} \beta_j^{(t)} + (y_i - \mu_i^{(t)}) \frac{\partial \eta_i^{(t)}}{\partial \mu_i^{(t)}} = \eta_i^{(t)} + (y_i - \mu_i^{(t)}) \frac{\partial \eta_i^{(t)}}{\partial \mu_i^{(t)}}$ . For the linear model  $\mathbf{z} = \mathbf{X}\beta + \epsilon$ , with  $\epsilon$  covariance  $\mathbf{V}$ , the generalized LS estmator is:  $\hat{\beta} = (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{z}$ . The score vector is  $\mathbf{u} = \mathbf{X}^T \mathbf{D} \mathbf{V}^{-1} (\mathbf{y} - \mu)$ , and we see that  $\mathbf{D} \mathbf{V}^{-1} = \mathbf{W} \mathbf{D}^{-1}$  for diagonal  $\mathbf{V}$ . Thus,  $\mathbf{u} = \mathbf{X}^T \mathbf{W} \mathbf{D}^{-1} (\mathbf{y} - \mu)$ , and the Fisher scoring equations are:  $\mathcal{J}^{(t)} \beta^{(t+1)} = \mathcal{J}^{(t)} \beta^{(t)} + \mathbf{u}^{(t)}$ . Thus,

$$\mathbf{J}^{(t)}\beta^{(t)} = \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X} \beta^{(t)} + \mathbf{x}^T \mathbf{W}^{(t)} (\mathbf{D}^{(t)})^{-1} (\mathbf{y} - \mu^{(t)}) = \mathbf{X}^T \mathbf{W}^{(t)} [\mathbf{X} \beta^{(t)} + (\mathbf{D}^{(t)})^{-1} (\mathbf{y} - \mu^{(t)})] = \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}$$
and  $J^{(t)}\beta^{(t+1)} = \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{W} \beta^{(t+1)}$  so that:

$$\beta^{(t+1)} = (\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}$$

Equivalence for Canonical Link For canonical link  $\theta_i = \eta_i$ , we have:  $\partial \mu_i / \partial \eta_i = b''(\theta_i)$ , so  $\frac{\partial l_i}{\partial \beta_j} = \frac{(y_i - \mu_i)x_{ij}}{a(\phi)} \Rightarrow \frac{\partial^2 l_i}{\partial \beta_j \partial \beta_k} = -\frac{x_{ij}}{a(\phi)} \left(\frac{\partial \mu_i}{\partial \beta_k}\right)$  which is independent of  $y_i$ , so:

$$\mathbf{H} = -\mathcal{J}$$

and so Newton-Raphson = Fisher scoring for GLMs with canonical link.

### 4.6 Model/Variable Selection

Stepwise Procedures Forward selection vs. backward elimination

**Bias-Variance Tradeoff**  $MSE = variance + (bias)^2$  so simpler model has higher bias, but may have lower variance  $\Rightarrow$  lower overall MSE.

**AIC** Kullback-Leibler divergence:  $KL[p, p_M(\hat{\beta}_M)] = E\left[\log\left(\frac{p(\mathbf{y}^*)}{p_M(\mathbf{y}^*; \hat{\beta}_M)}\right)\right]$  measures distance between true distribution  $p(\cdot)$  and model fitted distribution  $p_M(\cdot; \hat{\beta}_M)$ 

AIC: minimize  $E[KL(p, p_M(\hat{\beta}_M))] \Leftrightarrow \min E[-E \log(p_M(\mathbf{y}; \hat{\beta}_M))]$  where outer with respect to set of models, inner with respect to p.  $l(\hat{\beta}_M)$  is biased estimator for  $E[E \log(p_M(\mathbf{y}; \hat{\beta}_M))]$  but can be reduced using number of parameters in M. Thus:

$$AIC = -2[l(\hat{\beta}) + |M|]$$

where |M| is the number of parameters in model M.

**Predictive Power** Two measures of summarizing predictive power (i.e.  $R^2$  in linear models):

- 1.  $\operatorname{corr}(\mathbf{y}, \hat{\mu})$ : analog of multiple correlation (but not necessarily non-decreasing with more parameters)
- 2. Likelihood Ratio: let  $l_M$  be maximized log-likelihood for model  $M;\ l_S$  for saturated;  $l_0$  for null model, then:

$$\frac{l_M - l_0}{l_S - l_0} \in [0, 1]$$

Collinearity Relations among explanatory variables may reduce validity and effects:

$$\operatorname{var}(\hat{\beta}_j) = \frac{1}{1 - R_j^2} \left[ \frac{\sigma^2}{\sum_i (x_{ij} - \bar{x})^{@}} \right]$$

where  $R_j^2$  is  $R^2$  in predicting  $x_j$  using  $x_{-j}$  and  $VIF_j = \frac{1}{1-R_j^2}$  is variance inflation factor. (So as variables are collinear,  $R_j^2$  goes up and  $\text{var}(\hat{\beta}_j) \to \infty$ .)

## 5 Binary Models

For binary response, assume  $n_i y_i \sim \text{Bin}(n_i, \pi_i)$ . Two sample sizes: 1)  $n_i$  is number of Bern trials in single binomial obs; 2) N is number of binomial obs. Let  $\mathbf{n} = (n_1, \dots, n_N)$  be samples sizes,  $n = \sum_i n_i$  overall Bern obs.

Two data types: 1) ungrouped data has  $\mathbf{n}=(1,\ldots,1)$  and large-sample asymptotics  $=N\to\infty$ ; 2) grouped data has  $n_i>1$  with (usually) categorical variables, same values in a group, and small-dispersion asymptotics  $=n_i\to\infty$  with N constant.

Same estimates  $\hat{\beta}$  and SE for grouped/ungrouped, but deviance changes (different saturated model).

#### 5.1 Link Functions

**Latent Variable Model** Threshold model with ungrouped data: 1)  $\exists$  unobserved continuous  $y_i^*$  s.t.  $y_i^* = \sum_j \beta_j x_{ij} + \epsilon_i$ ; 2)  $\epsilon_i$  has mean 0, CDF F; 3) threshold  $\tau$  s.t.  $y_i = 0$  if  $y_i^* \le \tau$  and  $y_i = 1$  if  $y_i^* > \tau$ . Then:

$$P(y_i = 1) = P(y_i^* > \tau) = P\left(\sum_j \beta_j x_{ij} + \epsilon_i > \tau\right)$$
$$= 1 - P\left(\epsilon_i \le \tau - \sum_j \beta_j x_{ij}\right)$$
$$= 1 - F\left(\tau - \sum_j \beta_j x_{ij}\right)$$

since data doesn't indicate what  $\tau$  is, can take  $\tau=0$  WLOG, and can use standard F (since multiply all parameters by constant). Generally F is symmetric about 0, so F(z)=1-F(-z) and:

$$P(y_i = 1) = F\left(\sum_b \beta_j x_{ij}\right) \Rightarrow F^{-1}[P(y_i = 1)] = \sum_{j=1}^p \beta_j x_{ij}$$

so the link function corresponds to inverse CDF for some latent distribution.

Link Functions/Models Possible link functions are:

- 1. Probit:  $F=\Phi$  so  $\Phi^{-1}[P(y_i=1)]=\sum_j \beta_j x_{ij}$
- 2. Logit:  $F(z) = \frac{e^z}{1+e^z}$  is logistic distribution, so  $F^{-1} = \text{logit}$  and  $\text{logit}[P(y_i = 1)] = \sum_j \beta_j x_{ij}$
- 3. Log-Log:  $F(z)=\exp[-\exp(-(x-a)/b)]$  (Type I extreme-value distribution) so that:  $-\log[-\log P(y_i=1)]=\sum_j \beta_j x_{ij}$

#### 5.2 Logistic Regression: Interpretation

$$\pi_i = \frac{\exp(\sum_j \beta_j x_{ij})}{1 + \exp(\sum_j \beta_j x_{ij})}$$

$$\boxed{\operatorname{logit}(\pi_i) = \sum_j \beta_j x_{ij}}$$

**Interpreting**  $\beta$  Interpretations depending on quantitative/qualitative:

• Quantitative x:  $\frac{\partial \pi_i}{\partial x_{ij}} = \beta_j \frac{\exp(\sum_j \beta_j x_{ij})}{1 + \exp(\sum_j \beta_j x_{ij})} = \beta_j \pi_j (1 - \pi_j)$  so that at steepest,  $\pi_i = 1/2$ :

$$\frac{\partial \pi_i}{\partial x_{ij}} = \frac{\beta_j}{4}$$

• Qualitative x: Let x be binary indicator,  $logit(\pi_i) = \beta_0 + \beta_1 x$  (2 × 2 contingency table). Then  $logit[P(y=1|x=1)] - logit[P(y=1|x=0)] = \beta_1$  so that  $e^{\beta_1}$  is odds ratio:

$$e^{\beta_1} = \frac{P(y=1|x=1)/[1-P(y=1|x=1)]}{P(y=1|x=0)/[1-P(y=1|x=0)]}$$

If there are multiple variables, odds of P(y=1) multiply by  $e^{\beta_j}$  for unit increase in  $x_j$ :

$$e^{\beta_j} = \frac{P(y=1|x_j=u+1)/[1-P(y=1|x_j=u+1)]}{P(y=1|x_j=u)/[1-P(y=1|x_j=u)]}$$

Case-Control Studies Retrospective studies fine for logistic regression since:

$$e^{\beta} = \frac{P(y=1|x=1)/P(y=0|x=1)}{P(y=1|x=0)/P(y=0|x=0)} = \frac{P(x=1|y=1)/P(x=0|y=1)}{P(x=1|y=0)/P(x=0|x=0)}$$

i.e. we can reverse response/explanatory and still get odds ratio interpretation.

Predictive Power Two main ways to summarize predictive power:

1. Classification table: cross-classify y with prediction  $\hat{y}$ ; i.e. use  $\hat{y}_i = 1$  if  $\hat{\pi}_i > \pi_0$  and  $\hat{y}_i = 0$  otherwise (i.e.  $pi_0 = 0.5, \, \pi_0 = \bar{y}$ ). Then:

sensitivity = 
$$P(\hat{y} = 1|y = 1)$$
 and specificity =  $P(\hat{y} = 0|y = 0)$ 

but depends strongly on cutoff  $\pi_0$ .

2. ROC curve: Let tpr = sensitivity and fpr = 1 - specificity.  $ROC\ curve$  = plot tpr (y) as function of fpr (x); generally concave

If  $pi_0 \approx 1$  then tpr = fpr = 0; If  $\pi_0 \approx 0$  then tpr = fpr = 1.

Concordance index = area under ROC curve = proportion of all pairs (i, j) such that  $y_i = 1, y_i = 0$  and  $\hat{\pi}_i > \hat{\pi}_i$ .

3. Correlation measure:  $\operatorname{corr}(\mathbf{y}, \hat{\mu})$  is useless because  $\mathbf{y}$  is 0 or 1. Better measure is  $\operatorname{corr}(\mathbf{y}^*, \hat{\mu})$ , i.e.  $\mathbf{y}^* = \mu + \epsilon$  and  $\hat{\mu} = \sum_i \beta_j x_{ij}$ .

## 5.3 Logistic Regression: Inference

Use likelihood equations and Newton-Raphson/Fisher Scoring, like other GLMs:

$$\sum_{i=1}^{N} \frac{(y_i - \hat{\mu}_i) x_{ij}}{\text{var}(y_i)} \frac{\partial \mu_i}{\partial \eta_i} = \sum_{i=1}^{N} \frac{n_i (y_i - \pi_i) x_{ij}}{\pi_i (1 - \pi_i)} f(\eta_i) = 0$$

since  $\mu_i = F(\eta_i)$  for CDF F resulting in PDF f. In terms of  $\beta$ :

$$\sum_{i=1}^{N} \frac{n_i(y_i - F(\sum_j \beta_j x_{ij})) x_{ij} f(\sum_j \beta_j x_{ij})}{F(\sum_j \beta_j x_{ij}) [1 - F(\sum_j \beta_j x_{ij})]} = 0$$

**Likelihood Equations** For logistic regression:  $F(z) = \frac{e^z}{1+e^z}$ ,  $f(z) = \frac{e^z}{(1+e^z)^2} = F(z)[1-F(z)]$  so:

$$\sum_{i=1}^{N} n_i (y_i - \pi_i) x_{ij} = 0$$

and if **X** is the  $N \times p$  model matrix, with totals  $s_i = n_i y_i$ , then:

$$\mathbf{X}^T \mathbf{s} = \mathbf{X}^T E(\mathbf{s})$$

i.e. as with all canonical link: sufficient statistic = expected value.

Asymptotic Covariance Matrix of Estimators  $\mathcal{J} = \mathbf{X}^T \mathbf{W} \mathbf{X}$ , and  $w_i = \frac{(\partial \mu_i/\partial \eta_i)^2}{\text{var}(y_i)} = n_i \pi_i (1 - \pi_i)$  so the estimated covariance matrix for large samples is:

$$\hat{\text{var}}(\hat{\beta}) = (\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})^{-1} = (\mathbf{X}^T \text{diag}[n_i \hat{\pi}_i (1 - \hat{\pi}_i)] \mathbf{X})^{-1}$$

Wald is Suboptimal 1) Scale-dependent; 2) Aberrant behavior when effect is large.

For null model  $logit(\pi) = \beta_0$ , and  $H_0: \beta_0 = 0$ , then on totals scale,  $z^2 = logit(y)^2 [ny(1-y)]$  while on proportion scale,  $z^2 = \frac{(y-0.5)^2}{y(1-y)/n}$  which are different.

Fisher Exact Test Used when n is small relative to p; eliminate nuisance parameters by conditioning on their sufficient statistics. Consider logistic regression with single binary x and small N, ungrouped:  $\log_{1}[P(y_i = 1)] = \beta_0 + \beta_1 x_i$ . Interested in  $\beta_1$ ;  $\beta_0$  is nuisance.

Kernel of log-likelihood is:  $\sum_i y_i \theta_i = \sum_i y_i (\beta_0 + \beta_1 x_i) = \beta_0 \sum_i y_i + \beta_1 \sum_i x_i y_i$  so  $\sum_i y_i$  is sufficient for  $\beta_0$ , and  $\sum_i x_i y_i$  for  $\beta_1$ . To eliminate  $\beta_0$ , consider  $\sum_i x_i y_i = s_1$  while conditioning on  $\sum_i y_i = s_0 + s_1$  where  $s_0$  is binomial success totals when x = 0  $(n_0)$  and  $s_1$  is total for x = 1  $(n_1)$ .

Consider  $H_0: \beta_1 = 0 \Leftrightarrow \pi_0 = \pi_1$ . Let  $\pi = \frac{e^{\beta_0}}{1 + e^{\beta_0}}$  under  $H_0$  and consider:

$$P(s_1 = t, s_0 = u) = \binom{n_0}{t} \pi^t (1 - \pi)^{n_0 - t} \binom{n_1}{u} \pi^u (1 - \pi)^{n_1 - u}$$

$$P(s_0 + s_1 = v) = \binom{n_0 + n_1}{v} \pi^v (1 - \pi)^{n_0 + n_1 - v}$$

$$\Rightarrow P(s_1 = t | s_0 + s_1 = v) = \frac{\binom{n_1}{t} \binom{n_0}{v - t}}{\binom{n_0 + n_1}{v}}$$

which is independent of  $\beta_0$ . To test  $H_0: \beta_1 = 0$  vs.  $H_a: \beta_1 > 0$ , we use:  $P(s_1 \ge t | s_1 + s_0)$  where t is observed  $s_1$  value.

Limited: we need sufficient statistics for nuisance parameters; only exist for canonical link GLMs.

### 5.4 Logistic Regression: Fitting

**Iterative Fitting** Since logit is canonical, Newton-Raphson = Fisher scoring. We can express derivatives as:

$$u_j^{(t)} = \sum_i (s_i - n_i \pi_i^{(t)}) x_{ij} \Rightarrow \mathbf{u}^{(t)} = \mathbf{X}^T (\mathbf{s} - \mu^{(t)})$$
$$(\mathbf{H})_{jk}^{(t)} = -\sum_i x_{ij} x_{ik} n_i \pi_i^{(t)} (1 - \pi_i^{(t)}) \Rightarrow \mathbf{H}^{(t)} = -\mathbf{X}^T \operatorname{diag}[n_i \pi_i^{(t)} (1 - \pi_i^{(t)})] \mathbf{X}$$

where  $\pi_i^{(t)} = \frac{\exp(\sum_j \beta_j^{(t)} x_{ij})}{1 + \exp(\sum_j \beta_i^{(t)} x_{ij})}$ ,  $\mu_i^{(t)} = n_i \pi_i^{(t)}$  so that the update is:

$$\beta^{(t+1)} = \beta^{(t)} + \left( \mathbf{X}^T \operatorname{diag}[n_i \pi_i^{(t)} (1 - \pi_i^{(t)})] \mathbf{X} \right)^{-1} \mathbf{X}^T (\mathbf{s} - \pi^{(t)})$$

Infinite Estimates Fitting runs into problems when complete separation or quasi-complete separation occurs. Quick example: y = 1 at x = 1, 2, 3 and y = 0 and x = 4, 5, 6; then  $\hat{\beta}_0 = -3.5\hat{\beta}_1$  and  $\hat{\beta}_1 = \infty$ .

Signs: 1) very large standard errors (since log-likelihood is near-flat); 2) perfect prediction ( $\hat{\pi}_i = 1$  if  $y_i = 1$  and vice versa); 3) maximized log-likelihood is basically 0.

Quasi-complete separation when cases exist with both outcomes on hyperplane; still infinite estimate, but log-likelihood < 0. (Often happens when  $y_i = 1$  or 0 for every obs with certain value of categorical variable)

We can still do: 1) LRT of  $\beta_1 = 0$  vs.  $\hat{\beta}_1 = \infty$  comparing log-likelihoods at these values; 2) invert test to get confidence interval, i.e.  $(L, \infty)$  where  $H_0: \beta_1 = L$  has p-value  $\alpha$ .

#### 5.5 Deviance and Model Comparison/Checking

1) LRT to check more complex model is better (if not, current model is probably fine); 2) Global goodness-of-fit tests (Pearson chi-squared or deviance)

**Deviance** For grouped data, saturated model has  $\tilde{\pi}_i = y_i$  (sample proportion), so LRT statistic comparing model to saturated is:

$$-2\left[\sum_{i} (n_{i}y_{i}\log(\hat{\pi}_{i}) + (n_{i} - n_{i}y_{i})\log(1 - \hat{\pi}_{i})) - \sum_{i} (n_{i}y_{i}\log(y_{i}) + (n_{i} - n_{i}y_{i})\log(1 - y_{i}))\right]$$

$$G^2 = D(\mathbf{y}; \hat{\mu}) = 2\sum_i n_i y_i \log \frac{n_i y_i}{n_i \hat{\pi}_i} + 2\sum_i (n_i - n_i y_i) \log \frac{n_i - n_i y_i}{n_i - n_i \hat{\pi}_i} = 2\sum_i \text{obs} \times \log \left(\frac{\text{obs}}{\text{fitted}}\right) \sim \chi_{N-p}^2$$

Pearson Statistic  $X^2 = \sum_{2N \text{cells}} \frac{(\text{obs-fitted})^2}{\text{fitted}} = \sum_i \frac{(n_i y_i - n_i \hat{\pi}_i)^2}{n_i \hat{\pi}_i} + \sum_i \frac{[(n_i - n_i y_i) - (n_i - n_i \hat{\pi}_i)]^2}{n_i - n_i \hat{\pi}_i}$ 

$$\Rightarrow X^2 = \sum_{i=1}^N \frac{(y_i - \hat{\pi}_i)^2}{\hat{\pi}_i (1 - \hat{\pi}_i)/n_i} \sim \chi_{N-p}^2$$

Again,  $X^2$  is a quadratic approximation of  $G^2$ , and  $|X^2 - G^2| \xrightarrow{p} 0$  under  $H_0$ . But  $X^2$  converges to  $\chi^2_{N-p}$  faster than  $G^2$ , so provides more reliable estimates when small success/failures.

Also, chi-squared under  $H_0$  only for grouped data!! Even for grouped data, if N is big with  $n_i$  small, then not really chi-squared.

**However**, even if ungrouped, we can still use  $G^2(M_0|M_1) = D(M_0) - D(M_1) \sim \chi^2_{p_1-p_0}$  under  $H_0: M_0$  holds.

**Residuals** Use Deviance/Pearson statistic (global goodness-of-fit) or LRT/deviance comparison (model comparison) to select a model; then use residuals to determine microscopic fits.

- 1. Pearson residual:  $e_i = \frac{y_i \hat{\pi}_i}{\sqrt{\hat{\pi}_i(1 \hat{\pi}_i)/n_i}}$  so that  $X^2 = \sum_i e_i^2$
- 2. Deviance residual:  $d_i = \sqrt{2\left[n_i y_i \log\left(\frac{n_i y_i}{n_i \hat{\pi}_i}\right) + (n_i n_i y_i) \log\left(\frac{n_i n_i y_i}{n_i n_i \hat{\pi}_i}\right)\right]} \times \text{sign}(e_i)$  so that  $D(\mathbf{y}; \hat{\mu}) = \sum_i d_i^2$
- 3. Standardized residual:  $r_i = \frac{y_i \hat{\pi}_i}{\sqrt{\hat{\pi}_i(1 \hat{\pi}_i)(1 \hat{h}_{ii})/n_i}} \sim \mathcal{N}(0, 1)$  if model holds where  $\hat{h}_{ii} = (\hat{\mathbf{H}}_W)_{ii}$  for  $\hat{\mathbf{H}}_W = \hat{\mathbf{W}}^{1/2}\mathbf{X}(\mathbf{X}^T\hat{\mathbf{W}}\mathbf{X})^{-1}\mathbf{X}^T\hat{\mathbf{W}}^{1/2}$  and  $\hat{\mathbf{W}} = n_i\hat{\pi}_i(1 \hat{\pi}_i)$

### 5.6 Probit and Log-Log Models

**Probit Models**  $\Phi^{-1}(\pi_i) = \sum_j \beta_j x_{ij}$  and  $\pi_i = \Phi\left(\sum_j \beta_j x_{ij}\right)$ 

- Interpreting parameters:  $\frac{\partial \pi_i}{\partial x_{ij}} = \beta_j \phi(\sum_j \beta_j x_{ij})$  so at max, 0, rate of increase is  $0.4 \cdot \beta_j$  (compare to  $0.25 \cdot \beta_j$  for logistic)
- Logistic comparison: ML parameter estimates in logistic are 1.8 times estimates in probit (because standard deviation of logistic is  $pi/\sqrt{3}$  times probit)
- Predictive power: Use ROC curve and  $corr(\mathbf{y}^*, \hat{\mu})$  as in logistic
- Fitting: Use likelihood equations with  $\Phi, \phi$  and iterative (Newton-Raphson  $\neq$  Fisher scoring)
- Asymptotics:  $\hat{\text{var}}(\hat{\beta}) = (\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})^{-1}$  where  $\hat{w}_i = \frac{n_i \phi(\eta_i)^2}{\Phi(\eta_i)[1 \Phi(\eta_i)]}$

**Log-Log/Complementary Log-Log Models** Both probit and logistic are symmetric response distributions (logit( $\pi_i$ ) = -logit(1 -  $\pi_i$ )). Log-log/complementary log-log useful when response for  $\pi_i$  is not symmetric.

25

- 1. **Log-Log Model**  $\pi_i = \exp[-\exp(\sum_j \beta_j x_{ij})]$  or  $-\log[-\log(\pi_i)] = \sum_j \beta_j x_{ij}$  Approaches 0 sharply; approaches 1 slowly
- 2. Complementary Log-Log Model

 $\pi_i = 1 - \exp[-\exp(\sum_j \beta_j x_{ij})]$  or  $\log[-\log(1 - \pi_i)] = \sum_j \beta_j x_{ij}$ Approaches 0 slowly; approaches 1 sharply

#### Multinomial Models 6

Binomial = two categories. Multinomial = c categories. Can be either nominal (no natural category

ordering) or ordinal (categories ordered). 
$$\pi_{ij} = P(y_i = j) = P(y_{ij} = 1) \text{ s.t. } \sum_{j=1}^{c} \pi_{ij} = 1; \mathbf{y}_i = (y_{i1}, \dots, y_{ic}) \text{ s.t. } \sum_{j=1}^{c} y_{ij} = 1. \text{ Finally,}$$

$$p(y_{i1}, \dots, y_{ic}) = \pi_{i1}^{y_{i1}} \cdots \pi_{ic}^{y_{ic}}$$

#### Nominal Response: Baseline-Category Logit 6.1

Baseline-Category Logits Need to consider all categories exchangeably, so: 1) pick a baseline category, i.e. c; 2) form logits of every other category w.r.t c (i.e. conditional probability of being in category j given in category j or c). Basically treat each j, c pair as binary model.

Baseline logits:  $\log \frac{\pi_{i1}}{\pi_{ic}}, \dots, \log \frac{\pi_{i,c-1}}{\pi_{ic}}$  where the  $j^{th}$  category logit is:

$$\log \frac{\pi_{ij}}{\pi_{ic}} = \log \left[ \frac{P(y_{ij} = 1 | y_{ij} = 1 \text{ or } y_{ic} = 1)}{1 - P(y_{ij} = 1 | y_{ij} = 1 \text{ or } y_{ic} = 1)} \right] = \operatorname{logit} \left[ P(y_{ij} = 1 | y_{ij} = 1 \text{ or } y_{ic} = 1) \right]$$

letting  $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})$  be explanatory variable values for subject i and  $\beta_j = (\beta_{j1}, \dots, \beta_{jp})$  be parameters for  $j^{th}$  baseline logit (i.e. exp. var. by subject, parameters by logit equation):

$$\log \frac{\pi_{ij}}{\pi_{ic}} = \mathbf{x}_i \beta_j = \sum_{k=1}^p \beta_{jk} x_{ik}$$

simultaneously describes effects of  $\mathbf{x}_i$  on all c-1 baseline logits; effects vary according to j category. Also, determines effects on all other logits, since:

$$\log \frac{\pi_j}{\pi_k} = \log \frac{\pi_j}{\pi_c} - \log \frac{\pi_k}{\pi_c} = \mathbf{x}_i (\beta_j - \beta_k)$$

Nominal: if all outcome category labels are permuted, and parameters permuted according, then model still holds!

Multivariate GLM Generalizing GLM to multivariate response:  $\mathbf{g}(\mu_i) = \mathbf{X}_i \beta$  where  $\mathbf{g}$  is multivariate ate;  $\mathbf{X}_i$  is model matrix (generally  $\mathbf{x}_i$  repeated  $|\mathbf{g}|$  times, but can differ for each  $g_i$ ).  $\mathbf{y}_i$  is from multivariate EDF:

$$f(\mathbf{y}_i; \theta_i, \phi) = \exp\left[\frac{\mathbf{y}_i^T \theta_i - b(\theta_i)}{a(\phi)} + c(\mathbf{y}_i, \phi)\right]$$

Multinomial  $\in$  Multivariate EDF:  $y_i = (y_{i1}, \dots, y_{i,c-1})$  since  $y_{ic} = 1 - (y_{i1} + \dots + y_{i,c-1})$  so redundant;  $\mu_i = (\mu_{i1}, \dots, \mu_{i,c-1})$  and we can express baseline logit model as:

$$g_j(\mu_i) = \log \left[ \frac{\mu_{ij}}{1 - (\mu_{i1} + \dots + \mu_{i,c-1})} \right], \mathbf{X}_i \beta = \begin{pmatrix} \mathbf{x}_i & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_i & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{x}_i \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{c-1} \end{pmatrix}$$

where each  $\beta_j = (\beta_{j1}, \dots, \beta_{jp})$ 

Multinomial likelihood is:  $\sum_{j=1}^{c-1} y_{ij} \log \pi_{ij} + \left(1 - \sum_{j=1}^{c-1} y_{ij}\right) \log \pi_{ic} = \sum_{j=1}^{c-1} \log \frac{\pi_{ij}}{\pi_{ic}} + \log \pi_{ic}$ 

so  $\theta_j = \log \frac{\pi_{ij}}{\pi_{i,j}}$ : baseline logit is the natural parameter and canonical link!

Fitting Important formulas:

$$\pi_{ij} = \frac{\exp(\mathbf{x}_i \beta_j)}{1 + \sum_{k=1}^{c-1} \exp(\mathbf{x}_i \beta_k)}$$
$$\pi_{ic} = \frac{1}{1 + \sum_{k=1}^{c-1} \exp(\mathbf{x}_i \beta_k)}$$

$$\pi_{ic} = \frac{1}{1 + \sum_{k=1}^{c-1} \exp(\mathbf{x}_i \beta_k)}$$

with  $\beta_c = \mathbf{0}$  for identifiability (also  $\exp(0) = 1$ , as needed).

The likelihood equations are:

$$l(\beta; \mathbf{y}) = \log \left[ \prod_{i=1}^{N} \left( \prod_{j=1}^{c} \pi_{ij}^{y_{ij}} \right) \right] = \sum_{i=1}^{N} \left[ \sum_{j=1}^{c-1} y_{ij} (\mathbf{x}_i \beta_j) - \log \left( 1 + \sum_{j=1}^{c-1} \exp(\mathbf{x}_i \beta_j) \right) \right]$$
$$= \sum_{j=1}^{c-1} \left[ \sum_{k=1}^{p} \beta_{jk} \left( \sum_{i=1}^{N} x_{ik} y_{ij} \right) \right] - \sum_{i=1}^{N} \log \left[ 1 + \sum_{j=1}^{c-1} \exp(\mathbf{x}_i \beta_j) \right]$$

so sufficient statistics are  $\sum_i x_{ik} y_{ij}$ . Taking derivatives:

$$\frac{\partial l(\beta; \mathbf{y})}{\partial \beta_{jk}} = \sum_{i=1}^{N} x_{ik} y_{ij} - \sum_{i=1}^{N} \left[ \frac{x_{ik} \exp(\mathbf{x}_i \beta_j)}{1 + \sum_{l=1}^{c-1} \exp(\mathbf{x}_i \beta_l)} \right] = \sum_{i=1}^{N} x_{ik} (y_{ij} - \pi_{ij}) = 0$$

$$\Rightarrow \left[ \sum_{i=1}^{N} x_{ik} y_{ij} = \sum_{i=1}^{N} x_{ik} \pi_{ij} \right]$$

so sufficient statistic = expected value, as in all canonical link.

Differentiating the log-likelihood again, we have:

$$\frac{\partial^2 l(\beta; \mathbf{y})}{\partial \beta_{jk} \partial \beta_{jk'}} = -\sum_{i=1}^N x_{ik} x_{ik'} \pi_{ij} (1 - \pi_{ij}), \frac{\partial^2 l(\beta; \mathbf{y})}{\partial \beta_{jk} \partial \beta_{j'k'}} = \sum_{i=1}^N x_{ik} x_{ik'} \pi_{ij} \pi_{ij'}$$

$$\Rightarrow (\mathcal{J})_{j,j'} = -\frac{\partial^2 l(\beta; \mathbf{y})}{\partial \beta_j \partial \beta_j'} = \sum_{i=1}^N p i_{ij} [I(j = j') - \pi_{ij'}] \mathbf{x}_i^T \mathbf{x}_i$$

where each are blocks of size  $p \times p$ , and there are  $(c-1)^2$  of them. We also have:  $\hat{\beta} \sim \mathcal{N}(\beta, \mathcal{J}^{-1})$ 

**Deviance and Inference** After fitting, need to do: 1) significance tests for parameters; 2) confidence intervals; 3) model comparisons. We can use LRT, Wald, or score for significance tests: i.e.  $H_0 = \beta_{1k} = \beta_{2k} = \cdots = \beta_{c-1,k} = 0$  can be done using LRT with maximized likelihood with/without variable  $x_k$ ; has  $\chi_{c-1}^2$  distribution.

**Deviance/Pearson Statistic**: For grouped data, let  $y_{ij} = \text{proportion of observations in setting } i$  in category j, then multinomial likelihood is:  $\prod_i \prod_j \pi_{ij}^{n_i y_{ij}}$  and deviance compares log-likelihood at model fit  $\hat{\pi}_{ij}$  and at saturated  $\tilde{\pi}_{ij} = y_{ij}$  resulting in:

$$G^2 = 2\sum_{i=1}^{N} \sum_{j=1}^{c} n_i y_{ij} \log \frac{n_i y_{ij}}{n_i \hat{\pi}_{ij}} = 2\sum \text{obs} \times \log \frac{\text{obs}}{\text{fitted}} \sim \chi^2_{(N-p)(c-1)}$$

$$X^{2} = \sum_{i=1}^{N} \sum_{j=1}^{c} \frac{(n_{i}y_{ij} - n_{i}\hat{\pi}_{ij})^{2}}{n_{i}\hat{\pi}_{ij}} = \sum \frac{(\text{obs - fitted})^{2}}{\text{fitted}} \sim \chi^{2}_{(N-p)(c-1)}$$

where df = N(c-1) - p(c-1) = (N-p)(c-1) because that's number of multinomial probabilities modeled minus number of parameters ( $\beta_c = 0$ ). (i.e. N = number of combinations of explanatory variable values.)

### 6.2 Ordinal Response: Cumulative Logit

If categories are ordered, use cumulative logits; generally fewer parameters, so model parsimony!

Cumulative Logit Models Now let  $y_i = j$  represent subject i falling into category j; equivalent to  $y_{ij} = 1$ . Consider cumulative probabilities  $P(y_i \le j) = \pi_{i1} + \dots + \pi_{ij}$ .

Cumulative logits: logit[ $P(y_i \le j)$ ] = log  $\frac{\pi_{i1} + \dots + \pi_{ij}}{\pi_{i,j+1} + \dots + \pi_{ic}}$ 

Cumulative logit model: Consider being in categories  $1, \ldots, j$  as "success", categories  $j+1, \ldots, c$  as "failure". Then:

 $\boxed{\operatorname{logit}[P(y_i \leq j)] = \alpha_j + \mathbf{x}_i \beta}$ 

where each cumulative logit has different intercept but same slope;  $\alpha_j$  increasing in j (i.e. same shape logit curves, do not cross). Ordinal because if arbitrary permutation of labels, then model need not hold!

Proportional odds structure: Note that:

$$\log \frac{P(y_i \le j | \mathbf{x}_i = \mathbf{u}) / P(y_i > j | \mathbf{x}_i = \mathbf{u})}{P(y_i \le j | \mathbf{x}_i = \mathbf{v}) / P(y_i > j | \mathbf{x}_i = \mathbf{v})} = \operatorname{logit}[P(y_i \le j | \mathbf{x}_i = \mathbf{u})] - \operatorname{logit}[P(y_i \le j | \mathbf{x}_i = \mathbf{v})] = (\mathbf{u} - \mathbf{v})\beta$$

so cumulative odds ratio (odds ratio of cumulative probabilities at different values of  $\mathbf{x}_i$ ) is proportional to  $e^{(\mathbf{u}-\mathbf{v})\beta}$ . Every unit increase in  $x_{ik}$  results in odds of  $y_i \leq j$  multiplying by  $e^{\beta_k}$ .

Latent Variable Motivation Motivate common effect  $\beta$ : suppose linear  $y_i^*$  s.t.  $y_i^* = \mathbf{x}_i \beta + \epsilon_i$  and  $\epsilon_i \sim G(\cdot)$ , i.e.  $\mu_i = \mathbf{x}_i \beta$  and  $y_i^* \sim G(y_i^* - \mu_i)$ . Cutpoints  $-\infty = \alpha_0 < \alpha_1 < \cdots < \alpha_c = \infty$  so that  $y_i = j$  iff  $\alpha_{j-1} < y_i^* \le \alpha_j$ . Then:  $P(y_i \le j) = P(y_i^* \le \alpha_j) = G(\alpha_j - \mathbf{x}_i \beta)$ , so the link function is  $G^{-1}$  and  $G^{-1}[P(y_i \le j)] = \alpha_j - \mathbf{x}_i \beta$ . (Note: – instead of + here: if  $\beta_k > 0$  and as  $x_{ik}$  increases, each  $P(y_i \le j)$  decreases, so less probability of being at low end of scale, so  $y_i$  tends to be larger at higher values of  $x_{ik}$ .) Same effects  $\beta$  regardless of selection of cutpoints!

Cumulative Link Models  $G^{-1}[P(y_i \leq j)] = \alpha_j + \mathbf{x}_i \beta$ . Effects are same for each cumulative probability; G is CDF of error term.

Cumulative probit if  $G = \Phi$  for standard normal; again effects  $\pi/\sqrt{3}$  times bigger in logit model. 1-unit increase in  $x_{ik}$  corresponds to  $\beta_k$  increase in  $E(y_i^*)$ .

**Predictive Power** Use  $corr(\mathbf{y}^*, \hat{\mathbf{y}}^*)$ , that is:

$$R^2 \approx \operatorname{corr}(\mathbf{y}^*, \hat{\mathbf{y}}^*)^2 = \frac{\operatorname{var}(\hat{y}^*)}{\operatorname{var}(\mathbf{y}^*)} = \frac{\operatorname{var}(\hat{\mathbf{y}}^*)}{\operatorname{var}(\hat{y}^*) + \operatorname{var}(\epsilon)}$$

where  $var(\epsilon) = 1$  for probit,  $\pi/\sqrt{3}$  for logit.

Fitting Consider again multicategory indicator  $\mathbf{y}_i = (y_{i1}, \dots, y_{ic})$  and cumulative link model  $G^{-1}[P(y_i \leq j)] = \alpha_j + \mathbf{x}_i \beta$ . The likelihood is:

$$\prod_{i=1}^{N} \prod_{j=1}^{c} \pi_{ij}^{y_{ij}} = \prod_{i=1}^{N} \prod_{j=1}^{c} [P(y_i \le j) - P(y_i \le j - 1)]^{y_{ij}}$$

$$\Rightarrow \left| l(\alpha, \beta) = \sum_{i=1}^{N} \sum_{j=1}^{c} y_{ij} \log[G(\alpha_j + \mathbf{x}_i \beta) - G(\alpha_{j-1} + \mathbf{x}_i \beta)] \right|$$

Then the likelihood equations are (with g being PDF of G):

$$\frac{\partial l}{\partial \beta_k} = \sum_{i=1}^{N} \sum_{j=1}^{c} y_{ij} x_{ik} \frac{g(\alpha_j + \mathbf{x}_i \beta) - g(\alpha_{j-1} + \mathbf{x}_i \beta)}{G(\alpha_j + \mathbf{x}_i \beta) - G(\alpha_{j-1} + x_i \beta)} = 0$$

$$\frac{\partial l}{\partial \alpha_k} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} j = 1^c y_{ij} \frac{\delta_{jk} g(\alpha_j + \mathbf{x}_i \beta) - \delta_{j-1,k} g(\alpha_{j-1} + \mathbf{x}_i \beta)}{G(\alpha_j + \mathbf{x}_i \beta) - G(\alpha_{j-1} + x_i \beta)} = 0$$

**Model Checking** Cumulative logit/proportional odds assumes: 1) location varies (i.e.  $\alpha_j$  differs by j); 2) constant variability ( $\beta$  constant). This results in *stochastic ordering*:  $P(y_i \leq j | \mathbf{x}_i = \mathbf{u}) \leq P(y_i \leq j | \mathbf{x}_i = \mathbf{v})$  or  $P(y_i \leq j | \mathbf{x}_i = \mathbf{u}) \geq P(y_i \leq j | \mathbf{x}_i = \mathbf{v})$  for **all** j! (If this is violated, cumulative logits might not fit well.)

Score test: Can check if separate effects  $\beta_j$  fit better than common  $\beta$  by using score test  $H_0: \beta_1 = \cdots = \beta_c = \beta$  (since score test only uses log-likelihood at  $H_0$ , i.e. common effects, so no problems with fitting with  $\beta_j$ .)

Using OLS for Ordinal Problems: 1) No clear-cut choice for category to numerical score; 2) Ordinal outcome is consistent with  $[\alpha_{j-1}, \alpha_j]$  interval of response; OLS doesn't consider this error; 3) OLS does not yield estimated prob. for each category given  $x_i$ ; 4) Non-constant variability due to floor/ceiling effects violates OLS; 5) Floor/ceiling effects can yield spurious interactions effects.

### 7 Count Models

### 7.1 Poisson Loglinear Model

Poisson Distribution Properties include:

- PMF:  $p(y; \mu) = \frac{\mu^y e^{-\mu}}{y!}$
- Moments:  $E(y_i) = \mu$ ,  $var(y_i) = \mu$ , and  $skew(y_i) = 1/\sqrt{\mu}$ , with  $mode(y_i) = |\mu|$

We have two ways of fitting count data assuming  $y_i \sim \text{Pois}(\mu_i)$ .

1. Variance Stabilization + OLS: Since Poisson has non-constant variance, we can transform  $y_i$  so transformed values have constant variance. By delta method,  $\text{var}[g(y)] \approx [g'(\mu)]^2 \text{var}(y)$  so using  $g(y) = \sqrt{y}$ :  $\text{var}(\sqrt{y}) \approx \left(\frac{1}{2\sqrt{\mu}}\right)^2 \mu = \frac{1}{4}!$ 

So fit  $E(\sqrt{\mathbf{y}}) = \mathbf{X}\beta$  using OLS. But: 1) effects hard to interpret; 2) other transforms might fit linear predictor better (i.e.  $\log(y_i)$  or  $y_i$  itself).

2. Poisson Loglinear GLM: Using  $\log \mu_i = \sum_i \beta_j x_{ij}$ , model is:

$$\log \mu_i = \sum_{j=1}^p \beta_j x_{ij} \text{ or } \log \mu = \mathbf{X}\beta$$

The likelihood equations become:  $\sum_{i} x_{ij}(y_i - \mu_i) = 0$ 

Exponential relation:  $\mu_i = (e^{\beta_1})^{x_{i1}} \cdots (e^{\beta_p})^{x_{ip}}$ , i.e. 1-unit increase in  $x_{ij}$  multiples  $\mu_i$  by  $e^{\beta_j}$ 

**Model Fitting** As usual, Newton-Raphson = Fisher Scoring for canonical log link; and asymptotically/estimated covariance of  $\hat{\beta}$  is:  $\hat{\text{var}}(\hat{\beta}) = (\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})^{-1}$  with  $w_i = \mu_i$ .

Model Checking/Comparison Again, we use global goodness-of-fits: Deviance or Pearson

**Deviance**:  $D(\mathbf{y}; \hat{\mu}) = 2\sum_{i} \left[ y_{i} \log \left( \frac{y_{i}}{\hat{\mu}} \right) - y_{i} + \hat{\mu}_{i} \right]$  but if there is intercept term, then by likelihood equations,  $\sum_{i} y_{i} = \sum_{i} \hat{\mu}_{i}$ , so:

$$G^{2} = D(\mathbf{y}; \hat{\mu}) = 2 \sum_{i=1}^{n} \left[ y_{i} \log \left( \frac{y_{i}}{\hat{\mu}_{i}} \right) \right]$$

Pearson Statistic:  $X^2 = \sum_{i=1}^n \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$ 

Both statistics are  $\chi^2_{n-p}$  when n is fixed and  $\mu_i$  grows unboundedly (i.e. contingency tables with fixed cells and sample size within each cell growing).

But neither reveals **how** the model fails. Better to compare (i.e. LRT/Deviance comparison) with more complex model, i.e. Poisson  $\subset$  Negative binomial.

Residuals For Poisson GLM:

- Pearson residual:  $e_i = \frac{y_i \hat{\mu}_i}{\sqrt{\hat{\mu}_i}}$
- ullet Deviance residual: components of deviance  $d_i$  as usual
- Standardized residual:  $r_i = \frac{y_i \hat{\mu}_i}{\sqrt{\hat{\mu}_i(1 \hat{h}_{ii})}}$

Also: compare observed counts to fitted counts; generally too low for 0 and high outcomes

29

**Example: One-Way Layout** Suppose  $y_{ij}$  is count variable in one-way layout of obs j in group i,  $i=1,\ldots,c$  and  $j=1,\ldots,n_i,\ n=\sum_i n_i$ . Let  $y_{ij}\sim \operatorname{Pois}(\mu_{ij});$  model common means in groups,  $\log(\mu_{ij})=\beta_i\ (\beta_0=0 \text{ for identifiability}).$  Then  $\log\mu=\mathbf{X}\beta$  with:

$$\mu = \begin{pmatrix} \mu_1 \mathbf{1}_{n_1} \\ \mu_2 \mathbf{1}_{n_2} \\ \vdots \\ \mu_c \mathbf{1}_{n_c} \end{pmatrix}, \mathbf{X}\beta = \begin{pmatrix} \mathbf{1}_{n_1} & \mathbf{0}_{n_1} & \cdots & \mathbf{0}_{n_1} \\ \mathbf{0}_{n_2} & \mathbf{1}_{n_2} & \cdots & \mathbf{0}_{n_2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n_c} & \mathbf{0}_{n_c} & \cdots & \mathbf{1}_{n_c} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_c \end{pmatrix}$$

Likelihood equations for  $\beta_i$  are:  $\sum_{j=1}^{n_i} (y_{ij} - \hat{\mu}_i) = 0$  so that  $\hat{\mu}_i = \bar{y}_i \Rightarrow \hat{\beta}_i = \log \bar{y}_i$ .

Since  $\hat{w}_{ii} = \hat{\mu}_i = \bar{y}_i$ , we have:  $\hat{\text{var}}(\hat{\beta}) = (\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})^{-1} = \text{diag}\left(\frac{1}{n_i \bar{y}_i}\right)$  so  $\hat{\beta}_i$  are uncorrelated and since  $\frac{\mu_h}{\mu_i} = \exp(\beta_h - \beta_i)$ ,  $\text{var}(\beta_h - \beta_i) = \text{var}(\beta_h) + \text{var}(\beta_i)$  and the  $100(1 - \alpha)\%$  CI for the ratio of means:

$$\frac{\mu_h}{\mu_i} \in \exp\left[ (\hat{\beta}_h - \hat{\beta}_i) \pm z_{\alpha/2} \sqrt{\frac{1}{n_h \bar{y}_h} + \frac{1}{n_i \bar{y}_i}} \right]$$

 $H_0: \mu_1 = \dots = \mu_c$  by using Deviance comparison/LRT, which equals:  $2\sum_{i=1}^c n_i \bar{y}_i \log\left(\frac{\bar{y}_i}{\bar{y}}\right) \approx \chi_{c-1}^2$ Global GOF tests:  $G^2 = 2\sum_{i=1}^c \sum_{j=1}^{n_i} y_{ij} \log\left(\frac{y_{ij}}{\bar{y}_i}\right)$  and  $X^2 = \sum_{i=1}^c \sum_{j=1}^{n_i} \frac{(y_{ij} - \bar{y}_i)^2}{\bar{y}_i} \sim \chi_{\sum_i (n_1 - 1)}^2$ 

### 7.2 Contingency Tables: Poisson = Multinomial

Independent Poisson counts in cells = multinomial models once conditioned on total sample size. Explore independence/association/interaction structure by specifying models with interaction terms (vs. not).

**Poisson = Multinomial** Independent Poisson  $(y_1, \ldots, y_c)$ , means  $(\mu_1, \ldots, \mu_c)$ ; total  $n = \sum_j y_j \sim \text{Pois}(\sum_j \mu_j)$ . Then conditional probability of  $(y_1, \ldots, y_c)$  given n is:

$$P\left[y_1 = n_1, \dots, y_c = n_c | \sum_{j=1}^c y_j = n \right] = \frac{P(y_1 = n_1, \dots, y_c = n_c)}{P(\sum_j y_j = n)} = \left(\frac{n!}{n_1! \cdots n_c!}\right) \prod_{j=1}^c \pi_j^{n_j}$$

where  $\pi_j = \frac{\mu_j}{\sum_i \mu_i}$ ; i.e. multinomial with  $n, pi_j$ .

Example: Two-Way Contingency Table Two categorical variables, A and B,  $r \times c$  table;  $y_{ij}$  with A = i, B = j. Model:  $\mu_{ij} = \mu \phi_i \psi_j$  s.t.  $\sum_i \phi_i = \sum_j \psi_j = 1$ . Then, log model is additive:  $\log \mu_{ij} = \beta_0 + \beta_i^A + \beta_j^B$  (main effects, no interaction; identifiability requires first-category baseline) Multinomial: Conditional on  $\sum_i \sum_j y_{ij} = n$ , we have  $\sum_i \sum_j \mu_{ij} = \mu$ , so  $\pi_{ij} = \mu_{ij}/\mu = \phi_i \psi_j$ , and since  $\sum_i \phi_i = 1$ ,  $\sum_j \psi_j = 1$ , we must have  $\phi_i = \pi_{i+}$  and  $\psi_j = \pi_{+j}$ . Thus:  $\{\pi_{ij} = \pi_{i+}\pi_{+j}\}$  and so category responses in A vs. B are independent! (i.e. P(A = i, B = j) = P(A = i)P(B = j))

Poisson: Consider  $2 \times 2$  table,  $\beta_1^A = \beta_1^B = 0$  for identifiability, then:

$$\log \mu = \begin{pmatrix} \log \mu_{11} \\ \log \mu_{12} \\ \log \mu_{21} \\ \log \mu_{22} \end{pmatrix} = \mathbf{X}\beta = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_2^A \\ \beta_2^B \end{pmatrix}$$

Deriving the likelihood equations, with  $\log \mu_{ij} = \beta_0 + \beta_i^A + \beta_j^B$ , we have log-likelihood kernel:

$$l(\mu) = \sum_{i=1}^{r} \sum_{j=1}^{c} y_{ij} \log(\mu_{ij}) - \sum_{i=1}^{r} \sum_{j=1}^{c} \mu_{ij} = n\beta_0 + \sum_{i=1}^{r} y_{i+} \beta_i^A + \sum_{j=1}^{c} y_{+j} \beta_j^B - \sum_{i=1}^{r} \sum_{j=1}^{c} \exp(\beta_0 + \beta_i^A + \beta_j^B)$$

$$\frac{\partial l}{\partial \beta_i^A} = y_{i+} - \sum_{j=1}^{c} \exp(\beta_0 + \beta_i^A + \beta_j^B) = y_{i+} - \mu_{i+} , \frac{\partial l}{\partial \beta_j^B} = y_{+j} - \mu_{+j}$$

So ML fitted values are:  $\left\{\hat{\mu}_{ij} = \frac{y_{i+}y_{+j}}{n}\right\}$  (equivalent to multinomial:  $\hat{\pi}_{i+} = y_{i+}/n, \hat{\pi}_{+j} = y_{+j}/n$ )

**Parameters**: Multinomial has (r-1) + (c-1), while Poisson has 1 + (r-1) + (c-1).

**Pearson Statistic:**  $X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(y_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}} \sim \chi^2_{(r-1)(c-1)}$  (since (rc-1) - (r-1) - (c-1))

**Example: Adding Interaction Term** Suppose  $\log \mu_{ij} = \beta_0 + \beta_i^A + \beta_j^B + \gamma_{ij}^{AB}$ , interaction term  $\gamma_{ij}^{AB}$ ; model matrix has cross-products of r-1 row indicators and c-1 column indicators. (i.e.  $\gamma_{1j}^{AB} = \gamma_{i1}^{AB} = 0$ , so for first column/row, we just have  $\beta_0 + \beta_i^A$  or  $\beta_0 + \beta_j^B$ ; yields 1 + (r-1) + (c-1) + (r-1)(c-1) = rc, so model is now saturated)

Interpretation: odds ratios. For r = c = 2, the log odds ratio is:

$$\log \frac{\pi_{11}/\pi_{21}}{\pi_{12}/\pi_{22}} = \log \frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}} = \gamma_{11}^{AB} + \gamma_{22}^{AB} - \gamma_{12}^{AB} - \gamma_{21}^{AB} = \gamma_{22}^{AB}$$

so  $e^{\gamma_{22}^{AB}}$  is odds ratio between being in A=1 vsA=2 given in B=1 over B=2.

General Interactions for Multiway Tables Consider three-way table, A, B, C, with  $r \times c \times l$  cells; independent cell counts  $\{y_{ijk}\}$  or multinomial cell prob.  $\{\pi_{ijk}\}$  with  $\sum_i \sum_j \sum_k \pi_{ijk} = 1$ .

- 1. Mutual independence: P(A=i,B=j,C=k) = P(A=i)P(B=j)P(C=k), that is  $\pi_{ijk} = \pi_{i++}\pi_{+j+}\pi_{++k}$  or  $\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C$  (independence = additive)
- 2. **Joint independence**: P(A=i,B=j,C=k) = P(A=i)P(B=j,C=k): A is jointly independent of B,C. That is,  $\pi_{ijk} = \pi_{i++}\pi_{+jk}$  or  $\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{jk}^{BC}$
- 3. Conditional independence: P(A=i,B=j|C=k) = P(A=i|C=k)P(B=j|C=k) then A,B are conditionally independent given C (i.e. consider separate two-way tables between A,B for each value of C; then in each two-way table, A,B are independent.) Then  $\pi_{ijk} = \frac{\pi_{i+k}\pi_{+jk}}{\pi_{++k}}$  and  $\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}$
- 4. Homogenous association: All pairs can be conditionally dependent:

$$\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}$$

Similar interpretation as interaction term in two-way model: consider fixed C=k, then **conditional association** between A,B is specified by odds ratios:  $\theta_{ij(k)}=\frac{\mu_{ijk}\mu_{rck}}{\mu_{ick}\mu_{rjk}}$  i.e. to baseline categories r,c. Then the log odds for r=c=2 are:  $\log\theta_{11(k)}=\log\frac{\mu_{11k}\mu_{22k}}{\mu_{12k}\mu_{21k}}=\gamma_{11}^{AB}+\gamma_{22}^{AB}-\gamma_{12}^{AB}-\gamma_{21}^{AB}=\gamma_{22}^{AB}$  so that  $\theta_{ij(1)}=\cdots=\theta_{ij(l)}$  for every i,j (without three-factor term)  $\Rightarrow$  homogeneous association.

**Fitting in Contingency Tables** Generally likelihood equations equate observed counts = fitted values for the highest-order terms, i.e.:

- 1) Mutual independence:  $y_{i++} = \hat{\mu}_{i++}, y_{+j+} = \hat{\mu}_{+j+}, y_{++k} = \hat{\mu}_{++k}$
- 2) Homogenous association:  $y_{ij+} = \hat{\mu}_{ij+}, y_{i+k} = \hat{\mu}_{i+k}, y_{+jk} = \hat{\mu}_{+jk}$

 $Loglinear \leftrightarrow Logistic Models$  Loglinear = symmetric category classifications, model joint distribution of categorical variables; Logistic = distinguish response vs. explanatory classifications.

Consider homogeneous association model, with A as response, B, C as explanatory; i.e. condition on  $n_{+jk}$  for each combination of B, C values, so  $c \times l$  logits. Let r = 2, then:

$$\log \frac{P(A=1|B=j,C=k)}{P(A=2|B=j,C=k)} = \log \frac{\mu_{1jk}}{\mu_{2jk}} = \log \mu_{1jk} - \log \mu_{2jk} = (\beta_1^A - \beta_2^A) + (\gamma_{1j}^{AB} - \gamma_{2j}^{AB}) + (\gamma_{1k}^{AC} - \gamma_{2k}^{AC})$$

$$\Rightarrow \text{logit}[P(A=1|B=j,C=k)] = \lambda + \delta_i^B + \delta_k^C$$

Same thing can be done if r > 2 using baseline-logits for A in terms of  $B, C, \ldots$  So note that the log-odds ratio at, say, different values of B are:

$$\log \frac{P(A=1|B=u,C=k)/P(A=2|B=u,C=k)}{P(A=1|B=v,C=k)/P(A=2|B=v,C-k)} = \delta_u^B - \delta_v^B$$

so the interaction terms are exactly the log-odds ratios, as in loglinear case.

### 7.3 Negative Binomial GLMs

**Overdispersion**: Poisson has variance = mean; but count data often has variance > mean, often due to heterogeneity (mixture of Poisson; not all explanatory variables in model)

Negative Binomial = Gamma Mixture of Poisson

$$y|\lambda \sim \text{Pois}(\lambda)$$

$$\lambda \sim \text{Gamma}(\mu, k)$$

Then  $E(\lambda) = \mu$ ,  $\operatorname{var}(\lambda) = \frac{\mu^2}{k}$ , so that  $E(y) = E[E(y|\lambda)] = \mu$  and  $\operatorname{var}(y) = E[\operatorname{var}(y|\lambda)] + \operatorname{var}[E(y|\lambda)] = E(\lambda) + \operatorname{var}(\lambda) = \mu + \frac{\mu^2}{k} > \mu$ .

Marginal y over Gamma mixture yields **Negative Binomial**:

- PDF:  $p(y; \mu, k) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{\mu}{\mu+k}\right)^y \left(\frac{k}{\mu+k}\right)^k$
- Natural parameter:  $\theta_i = \log \frac{\mu_i}{\mu_i + k}$  for fixed k
- Dispersion parameter:  $\gamma = 1/k$  (NBin  $\rightarrow$  Pois as  $\gamma \rightarrow 0$ )
- Moments:  $E(y) = \mu$ ,  $var(y) = \mu + \gamma \mu^2$

Negative Binomial GLMs Use log link rather than canonical (natural parameter above); treat  $\gamma$  as constant for all i but unknown.

- Link:  $\log \mu_i$
- Log-likelihood:

$$l(\beta, \gamma; \mathbf{y}) = \sum_{i=1}^{n} \left[ \log \Gamma(y_i + 1/\gamma) - \log \Gamma(1/\gamma) - \log \Gamma(y_i + 1) \right] + \sum_{i=1}^{n} \left[ y_i \log \left( \frac{\gamma \mu_i}{1 + \gamma \mu_i} \right) - \left( \frac{1}{\gamma} \right) \log(1 + \gamma \mu_i) \right]$$

- Likelihood equations:  $\sum_{i=1}^{n} \frac{(y_i \mu_i) x_{ij}}{\mu_i + \gamma \mu_i^2} \left( \frac{\partial \mu_i}{\partial \eta_i} \right) = 0$
- Hessian:  $\frac{\partial^2 l}{\partial \beta_j \partial \gamma} = -\sum_i \frac{(y_i \mu_i) x_{ij}}{(1 + \gamma \mu_i)^2} \left( \frac{\partial \mu_i}{\partial \eta_i} \right)$  so  $E\left[ \frac{\partial^2 l}{\partial \beta_j \partial \gamma} \right] = 0$  and  $\beta, \gamma$  are orthogonal, and  $\hat{\beta}, \hat{\gamma}$  are asymptotically independent.
- Fitting:  $\hat{w}_i = \frac{\hat{\mu}_i}{1 + \gamma \hat{u}_i}$  and  $\hat{\text{var}}(\hat{\beta}) = (\mathbf{X}^T \hat{\mathbf{W}} \mathbf{X})^{-1}$  with log link.
- Deviance:  $D(\mathbf{y}; \hat{\mu}) = 2\sum_{i} \left[ y_i \log \left( \frac{y_i}{\hat{\mu}_i} \right) \left( y_i + \frac{1}{\hat{\gamma}} \right) \log \left( \frac{1 + \hat{\gamma} y_i}{1 + \hat{\gamma} \hat{\mu}_i} \right) \right]$

**Model Comparison: Poisson vs. NBin** Use LRT with  $H_0: \gamma = 0$  (or informally AIC values). But since  $\gamma = 0$  is on boundary, the LRT statistic is 1/2 point mass at 0 and 1/2 chi-squared, df = 1, so the p-value is 1/2 what we obtain by treating LRT statistic as  $\chi_1^2$ .

#### 7.4 Zero-Inflated GLMs

Often counts of 0 are much larger than expected for Poisson; i.e. random vs. structural zero  $\Rightarrow$  zero-inflation. Less problematic for negative binomial, but still can be problem if two modes (i.e. mode at 0, mode > 0).

Zero-Inflated Poisson (ZIP) Mixture model of: 1) point mass at 0; 2) count distribution (Poisson):

32

$$y_i \sim \begin{cases} 0 & \text{with probability} \quad 1 - \phi_i \\ \text{Pois}(\lambda_i) & \text{with probability} \quad \phi_i \end{cases}$$

• Unconditional PMF:

$$P(y_i = 0) = (1 - \phi_i) + \phi_i e^{-\lambda_i}, P(y_i = j) = \phi_i \frac{\lambda_i^j e^{-\lambda_i}}{j!}$$

• Model:  $logit(\phi_i) = \mathbf{x}_{1i}\beta_1$  and  $log(\lambda_i) = \mathbf{x}_{21}\beta_2$ 

- Latent variable:  $z_i = 0 \Rightarrow y_i = 0$ ,  $z_i = 1 \Rightarrow y_i \sim \text{Pois}(\lambda_i)$ ;  $P(z_i = 0) = 1 \phi_i$ ,  $P(z_i = 1) = \phi_i$
- Moments:  $E(y_i) = E[E(y_i|z_i)] = (1 \phi_i) \cdot 0 + \phi_i \lambda_i = \phi_i \lambda_i$  $\operatorname{var}(y_i) = E[\operatorname{var}(y_i|z_i)] + \operatorname{var}[E(y_i|z_i)] = [(1 - \phi_i) \cdot 0 + \phi_i \lambda_i] + [(1 - \phi_i)(0 - \phi_i \lambda_i)^2 + \phi_i(\lambda_i - \phi_i \lambda_i)^2] = \phi_i \lambda_i [1 + (1 - \phi_i)\lambda_i] > E(y_i) \text{ (over dispersion)}$
- Log-likelihood:

$$l(\beta_1, \beta_2) = \sum_{y_i=0} \log[1 + e^{\mathbf{x}_{1i}\beta_1} e^{-exp(\mathbf{x}_{2i}\beta_2)}] - \sum_{i=1}^n \log(1 + e^{\mathbf{x}_{1i}\beta_1}) + \sum_{y_i>0} [\mathbf{x}_{1i}\beta_1 + y_i\mathbf{x}_{2i}\beta_2 - e^{\mathbf{x}_{2i}\beta_2} - \log(y_i!)]$$

• Simpler parametrization: ZIP model has many parameters  $\beta_1, \beta_2$  compared to Poisson. Instead, consider:  $\mathbf{x}_{1i} = \mathbf{x}_{2i}$  and  $\beta_2 = \tau \beta_1$ Interpretability also ruined because parameters do not directly effect  $E(y_i) = \phi_i \lambda_i$ ; one solution is to do null model for  $\phi_i$  (so  $E(y_i)$  proportional to  $\lambda_i$ )

Zero-Inflated Negative Binomial (ZINB) Same as Poisson, except negative binomial on count part; useful when still overdispersion after applying ZIP model

**Hurdle Model** "Hurdle" crossing 0;  $P(y_i > 0) = \pi_i$ ,  $P(y_i = 0) = 1 - \pi_i$ ; truncated model for  $y_i | y_i > 0$ 

- PMF:  $P(y_i = 0) = 1 \pi_i, P(y_i = j) = \pi_i \frac{f(j; \mu_i)}{1 f(0; \mu_i)}$
- Model:  $logit(\pi_i) = \mathbf{x}_{1i}\beta_1$  and  $log(\mu_i) = \mathbf{x}_{2i}\beta_2$
- Log-likelihood:  $l(\beta_1, \beta_2) = l_1(\beta_1) + l_2(\beta_2)$  with:

$$l_1(\beta_1) = \sum_{y_i=0} \log(1 - \pi_i) + \sum_{y_i>0} \log(\pi_i) = \sum_{y_i>0} \mathbf{x}_{1i}\beta_1 - \sum_{i=1}^n \log(1 + e^{\mathbf{x}_{1i}\beta})$$
$$l_2(\beta_2) = \sum_{y_i>0} \left[ \log f\left(y_i; e^{\mathbf{x}_{2i}\beta_2}\right) - \log[1 - f\left(0; e^{\mathbf{x}_{2i}\beta_2}\right)] \right]$$

## 8 Quasi-Likelihood

QL is motivated by two points:

- 1. Overdispersion: i.e. for Poisson, restriction of variance = mean made the fit very poor for many data sets.
- 2. Mean-variance relation: Likelihood equations **only** depend on distribution of  $y_i$  through  $\mu_i$  and  $v(\mu_i)$ .

So instead of specifying distribution for  $y_i$ , just pick mean-variance relation  $v(\mu_i)$ , which seems appropriate for given data; along with: 1) link function; 2) linear predictor.

### 8.1 Variance Inflation for Poisson/Binomial GLMs

To motivate QL methods, we use QL to deal with variance inflation in Poisson/Binomial models.

**QL Approach to Variance Inflation** Suppose standard model (i.e. Poisson/Binomial) assumes  $v^*(\mu_i)$ , but actual variance may be different, i.e.:

$$var(y_i) = v(\mu_i) = \phi v^*(\mu_i)$$

for constant  $\phi$  ( $\phi > 1$  is overdispersion case.)

- Substitute  $v(\mu_i)$  into likelihood equations;  $\phi$  drops since equal to zero:  $\sum_i \frac{(y_i \mu_i)x_{ij}}{v(\mu_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right) = 0 \Rightarrow \sum_i \frac{(y_i \mu_i)x_{ij}}{v^*(\mu_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right) = 0$  so identical to likelihood equations for GLM with variance  $v^*(\mu_i)$ .
- Fits/estimates identical;  $w_i = \frac{(\partial \mu_i/\partial \eta_i)^2}{\text{var}(y_i)} = \frac{(\partial \mu_i/\partial \eta_i)^2}{\phi v^*(\mu_i)}$  so asymptotic  $\text{var}(\hat{\beta}) = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} = \phi(\mathbf{X}^T \mathbf{W}^* \mathbf{W})^{-1}$  for the QL-adjusted model. (i.e.  $SE_{QL} = \sqrt{\phi} \times SE_{standard}$ )
- Pearson statistic:  $X^2 = \sum_i \frac{(y_i \hat{\mu}_i)^2}{v^*(\hat{\mu}_i)}$  for standard model. If variance inflation, then  $X^2$  doesn't fit well; for QL model, want  $X^2/\phi \approx \chi^2_{n-p}$  so  $E(X^2/\phi) \approx n - p \Rightarrow E[X^2/(n-p)] \approx \phi$  and:

$$\hat{\phi} = \frac{X^2}{n-p} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$$

So steps to fitting QL approach are:

- 1. Fit standard GLM with variance  $v^*(\mu_i)$ , and use p ML estimates  $\hat{\beta}$
- 2. Multiply standard SE estimates by  $\sqrt{\hat{\phi}} = \sqrt{X^2/(n-p)}$

Overdispersed Poisson  $v(\mu_i) = \phi \mu_i$ , with identical parameter estimates, and Pearson statistic:  $X^2 = \sum_i \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$  so  $\hat{\phi} = X^2/(n-p)$  for variance-inflation estimate

Overdispersed Binomial Let  $n_i y_i \sim \text{Bin}(n_i, \pi_i)$ ; overdispersion due to: 1) heterogeneity due to unobserved variables; 2) positive correlation between Bern trials (alternative: use Beta-Binomial)

Variance function:  $v(\mu_i) = \phi \pi_i (1 - \pi_i)/n_i$ 

Pearson statistic/estimate:  $\hat{\phi} = \frac{X^2}{n-p} = \frac{1}{n-p} \sum_i \frac{(y_i - \hat{\pi}_i)^2}{\hat{\pi}_i (1 - \hat{\pi}_i)/n_i}$ 

Note: Does not work for ungrouped data, because necessarily  $var(y_i) = \pi_i(1 - \pi_i)$  structurally

34

#### 8.2 Beta-Binomial Models

Handling Binomial overdispersion (without structural problems as in variance-inflation) due to: 1) correlated trials; 2) unobserved heterogeneity

1) Correlated Bernoulli Trials Let  $y_{i1}, \ldots, y_{in_i}$  be  $n_i$  Bernoulli trials for  $y_i = \sum_{j=1}^{n_i} \frac{y_{ij}}{n_i}$ . If trials not independent, i.e.  $\operatorname{corr}(y_{ij}, y_{ik}) = \rho$ :  $\operatorname{var}(y_{ij}) = \pi_i(1 - \pi_i)$ ,  $\operatorname{Cov}(y_{ij}, y_{ik}) = \rho \pi_i(1 - \pi_i)$ , so:

$$\operatorname{var}(y_{i}) = \frac{1}{n_{i}^{2}} \operatorname{var}(\sum_{j=1}^{n_{i}} y_{ij}) = \frac{1}{n_{i}^{2}} \left[ \sum_{j=1}^{n_{i}} \operatorname{var}(y_{ij}) + 2 \sum_{j < k} \operatorname{Cov}(y_{ij}, y_{ik}) \right] = \frac{1}{n_{i}^{2}} [n_{i} \pi_{i} (1 - \pi_{i}) + n_{i} (n_{i} - 1) \rho \pi_{i} (1 - \pi_{i})]$$

$$\Rightarrow \left[ \operatorname{var}(y_{i}) = [1 + \rho(n_{i} - 1)] \frac{\pi_{i} (1 - \pi_{i})}{n_{i}} \right]$$

so overdispersion when  $\rho > 0$  (also works when  $n_i = 1$  since just binomial variance)

Using QL with  $v(\pi_i) = [1 + \rho(n_i - 1)] \frac{\pi_i(1 - \pi_i)}{n_i}$ , the estimates differ from ML estimates (since  $1 + \rho(n_i - 1)$  term doesn't drop out of likelihood equations). Iterative method:

- 1. Solve quasi-likelihood equations for  $\hat{\beta}$  given  $\hat{\rho}$ :  $\sum_i \frac{(y_i \hat{\pi}_i) x_{ij}}{[1 + \hat{\rho}(n_i 1)]\hat{\pi}_i(1 \hat{\pi}_i)/n_i} = 0$
- 2. Use updated  $\hat{\beta}$  to solve:  $X^2 = \sum_i \frac{(y_i \hat{\pi}_i)^2}{[1 + \hat{\rho}(n_i 1)]\hat{\pi}_i(1 \hat{\pi}_i)/n_i} = n p$  (Pearson to expected value)
- 2) Heterogeneity: Mixture Model (Beta-Binomial) Mixture model over  $\pi$  for s = ny:

$$s|\pi \sim \text{Bin}(n,\pi)$$
  
 $\pi \sim \text{Beta}(\alpha_1, \alpha_2)$ 

Properties of the Beta distribution:

- PDF:  $f(\pi; \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \pi^{\alpha_1 1} (1 \pi)^{\alpha_2 1}$  for  $\alpha_1, \alpha_2 > 0$
- Shapes: uniform  $(\alpha_1 = \alpha_2 = 1)$ ; unimodal symmetric  $(\alpha_1 = \alpha_2 > 1)$ ; unimodal skewed left  $(\alpha_1 > \alpha_2 > 1)$  or right  $(\alpha_2 > \alpha_1 > 1)$ ; U-shaped  $(\alpha_1, \alpha_2 < 1)$
- Re-parametrization:  $\mu = \frac{\alpha_1}{\alpha_1 + \alpha_2}$  and  $\theta = \frac{1}{\alpha_1 + \alpha_2}$
- Moments:  $E(\pi) = \mu$  and  $var(\pi) = \mu(1-\mu)\frac{\theta}{1+\theta}$
- **Beta-Binomial**: Marginal of s = ny:

$$p(s; n, \mu, \theta) = \binom{n}{s} \frac{\left[\prod_{k=0}^{s-1} (\mu + k\theta)\right] \left[\prod_{k=0}^{n-s-1} (1 - \mu + k\theta)\right]}{\prod_{k=0}^{n-1} (1 + k\theta)}$$

- Marginal moments:  $E(y) = \mu$  and  $\text{var}(y) = \left[1 + (n-1)\frac{\theta}{1+\theta}\right] \frac{\mu(1-\mu)}{n}$
- Correlation:  $\rho = \frac{\theta}{1+\theta}$  is **exactly** the correlation between Bernoulli trials
- Model: assume  $\theta$  identical for all observations; say  $n_i y_i \sim \text{Beta-Bin}(n_i, \mu_i, \theta)$  then use **logit** link: logit( $\mu_i$ ) =  $\mathbf{x}_i \beta$  (can use Newton-Raphson, but Beta-Bin **not** in EDF!)
- If not actually Beta-Binomial, estimates  $\hat{\beta}$  are **not robust** or consistent.

### 8.3 Model Misspecification and Robust Estimation

Unlike Beta-Binomial mixture model, QL methods are robust to model misspecification!

Estimating Equations The quasi-score / estimating equations are:

$$\mathbf{u}(\beta) = \sum_{i=1}^{n} \left( \frac{\partial \mu_i}{\partial \beta} \right)^T \frac{y_i - \mu_i}{v(\mu_i)} = \mathbf{0}$$

i.e. using the fact that  $\frac{\partial \mu_i}{\partial \beta_j} = \frac{\partial \mu_i}{\partial \eta_i} x_{ij}$ .

Quasi-score function  $u_j(\beta)$  is an **unbiased estimating function** because  $E[u_j(\beta)] = 0$ . For unbiased estimating function, the estimating equations yield estimator  $\hat{\beta}$ .

35

Quasi-Likelihood Properties QL treats quasi-score  $\mathbf{u}(\beta)$  as derivative of quasi-log-likelihood function, which yields nice properties like ML:

- If  $\mu_i$ ,  $v(\mu_i)$  are correct, then QL estimators  $\hat{\beta}$  are asymptotically efficient for estimators locally linear in  $y_i$
- $\hat{\beta}$  are asymptotically normal with  $\mathbf{V} \approx \left[\sum_{i=1}^{n} \left(\frac{\partial \mu_i}{\partial \beta}\right)^T [v(\mu_i)]^{-1} \left(\frac{\partial \mu_i}{\partial \beta}\right)\right]^{-1}$
- **Key result**:  $\hat{\beta}$  are **consistent** for  $\beta$  even if  $v(\mu_i)$  is misspecified! (as long as link function + linear predictor are correct)

Robust Covariance Estimation: Sandwich Matrix Generally,  $\operatorname{var}(y_i) \neq \mathbf{v}(\mu_i)$ ; then the asymptotic  $\mathbf{V}$  is incorrect. To find  $\operatorname{var}(\beta)$ , use Taylor expansion of  $\mathbf{u}(\beta)$ :  $\mathbf{u}(\hat{\beta}) \approx \mathbf{u}(\beta) + \frac{\partial \mathbf{u}(\beta)}{\partial \beta}(\hat{\beta} - \beta)$  and since  $\mathbf{u}(\hat{\beta}) = \mathbf{0}$  by definition,  $(\hat{\beta} - \beta) \approx -\left(\frac{\partial \mathbf{u}(\beta)}{\partial \beta}\right)^{-1} \mathbf{u}(\beta)$  so that  $\operatorname{var}(\hat{\beta}) \approx \left(\frac{\partial \mathbf{u}(\beta)}{\partial \beta}\right)^{-1} \operatorname{var}[\mathbf{u}(\beta)] \left(\frac{\partial \mathbf{u}(\beta)}{\partial \beta}\right)^{-1}$ .

But  $\left(\frac{\partial \mathbf{u}(\beta)}{\partial \beta}\right)$  is Hessian of quasi-log-likelihood, so symmetric and  $-\left(\frac{\partial \mathbf{u}(\beta)}{\partial \beta}\right)^{-1} = \mathbf{V}$  is inverse information matrix for specified model; and

$$\operatorname{var}[\mathbf{u}(\beta)] = \operatorname{var}\left[\sum_{i=1}^n \left(\frac{\partial \mu_i(\beta)}{\partial \beta}\right)^T \frac{y_i - \mu_i}{v(\mu_i)}\right] = \sum_{i=1}^n \left(\frac{\partial \mu_i(\beta)}{\partial \beta}\right)^T \frac{\operatorname{var}(y_i)}{[v(\mu_i)]^2} \left(\frac{\partial \mu_i(\beta)}{\partial \beta}\right) \text{ and so:}$$

$$\operatorname{var}(\hat{\beta}) \approx \mathbf{V} \left[ \sum_{i=1}^{n} \left( \frac{\partial \mu_{i}(\beta)}{\partial \beta} \right)^{T} \frac{\operatorname{var}(y_{i})}{[v(\mu_{i})]^{2}} \left( \frac{\partial \mu_{i}(\beta)}{\partial \beta} \right) \right] \mathbf{V}$$

which simplifies to **V** if  $\operatorname{var}(y_i) = v(\mu_i)$ . But generally we don't know  $\operatorname{var}(y_i)$ , so we estimate:  $\mu_i \to \hat{\mu}_i$  and  $\operatorname{var}(y_i) \to (y_i - \hat{\mu}_i)^2$  and obtain the **sandwich estimator**:

$$var(\hat{\beta}) \approx \hat{\mathbf{V}} \left[ \sum_{i=1}^{n} \left( \frac{\partial \hat{\mu}_{i}(\beta)}{\partial \beta} \right)^{T} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{[v(\hat{\mu}_{i})]^{2}} \left( \frac{\partial \hat{\mu}_{i}(\beta)}{\partial \beta} \right) \right] \hat{\mathbf{V}}$$

Sandwich estimator is robust: whether or not  $v(\mu_i)$  is correct, n times estimator converges in probability to asymptotic covariance matrix of  $\sqrt{n}(\hat{\beta} - \beta)$ !

**Example: Poisson Misspecification**: Suppose model  $y_i \sim \text{Pois}(\mu_i)$ , but actually  $\text{var}(y_i) = \mu_i^2$ ; consider null model  $\mu_i = \beta \Rightarrow \frac{\partial \mu_i}{\partial \beta} = 1$ , so:  $u(\beta) = \sum_{i=1}^n \left(\frac{\partial \mu_i}{\partial \beta}\right) [v(\mu_i)]^{-1} (y_i - \mu_i) = \sum_{i=1}^n \frac{y_i - \mu_i}{\mu_i} = \sum_{i=1}^n \frac{y_i - \beta}{\beta} = 0$  so  $\hat{\beta} = \bar{y}$  and model-based variance is:  $V = \left[\sum_{i=1}^n \left(\frac{\partial \mu_i}{\partial \beta}\right) [v(\mu_i)]^{-1} \left(\frac{\partial \mu_i}{\partial \beta}\right)\right]^{-1} = \frac{\beta}{n}$  so that  $\hat{V} = \frac{\bar{y}}{\pi}$ .

The true variance of  $\hat{\beta}$  using  $\text{var}(y_i) = \mu_i^2$  is:  $\frac{\beta^2}{n} = \frac{\bar{y}^2}{n}$  which is different when  $\bar{y} > 1$ . The robust sandwich estimator (since we don't know  $\text{var}(y_i)$ ) is, using  $\mu_i = \beta = \bar{y}$ ,  $\sum_i \frac{(y_i - \bar{y})^2}{n^2}$ 

### 9 Correlated Data

Possible cases: 1) Survey asks for opinions on related questions/topics, so answers will be correlated; 2) Clinical trial observes same subjects over time, and measurements from each time point are correlated.

**Notation**:  $\mathbf{y}_i = (y_{i1}, \dots, y_{id})$ , i.e. each subject *i* has cluster of *d* obs (i.e. one subject observed over *d* time points);  $\mathbf{x}_{ij}$  is row vector of *p* explanatory variables for  $y_{ij}$ ;  $\mu_{ij} = E(y_{ij})$ .

Two types of models: 1) marginal model (model each marginal  $y_{ij}$  and use correlation structure for SE); 2) generalized linear mixed model (model entire cluster, using random effect for each cluster)

Two types of effects: 1) **between-subject** (between-cluster); 2) **within-subject** (within-cluster).

**Example:**  $2 \times 2$  **Design.** Suppose treatments A, B given at times 1, 2 (d = 2); treatment = between subjects, time = within-subjects.  $(y_{i1}^A, y_{i2}^A)$  and  $(y_{i1}^B, y_{i2}^B)$  are for subject i in A or B. Let  $\operatorname{corr}(y_{i1}^X, y_{i2}^X) = \rho$  and  $\operatorname{corr}(y_{it}^A, y_{ju}^B) = 0$ ,  $\operatorname{var}(y_{it}^A) = \operatorname{var}(y_{it}^B) = \sigma^2$ . Let  $\bar{y}_t^A = \frac{1}{n} \sum_{i=1}^n y_{it}^A$  and  $\bar{y}_t^B = \frac{1}{n} \sum_{i=1}^n y_{it}^B$ . Then between-subjects effect is  $b = \frac{\bar{y}_1^A + \bar{y}_2^B}{2} - \frac{\bar{y}_1^B + \bar{y}_2^B}{2}$  and within-subjects effect is  $w = \frac{\bar{y}_1^A + \bar{y}_1^B}{2} - \frac{\bar{y}_2^A + \bar{y}_2^B}{2}$ . Then we have  $\operatorname{var}(b) = \frac{\sigma^2(1+\rho)}{n}$  and  $\operatorname{var}(w) = \frac{\sigma^2(1-\rho)}{n}$ , but if we assume independence than they are both  $\frac{\sigma^2}{n}$ , so standard errors are too small for  $\operatorname{var}(b)$  and too large for  $\operatorname{var}(w)$ .

### 9.1 Marginal Models and GLMMs

Marginal Model  $g(\mu_{ij}) = \mathbf{x}_{ij}\beta$  for all i = 1, ..., n and j = 1, ..., d (for between-cluster effects)

i.e. models marginal distribution of each  $y_{ij}$ , so GLM structure for each  $y_{ij}$ .

**Example:**  $y_{ij}$  is score on test j for student i, with GPA  $x_i$ , so then  $\beta = (\beta_{01}, \beta_{11}, \dots, \beta_{0d}, \beta_{1d})$  and  $\mathbf{x}_{ij} = (0, 0, \dots, 1, x_i, \dots, 0, 0)$ 

**GLMM** 
$$g[E(y_{ij}|\mathbf{u}_i)] = \mathbf{x}_{ij}\beta + \mathbf{z}_{ij}\mathbf{u}_i$$
 for  $i = 1, ..., n$  and  $j = 1, ..., d$  (for within-cluster effects)

 $\beta$  are fixed effects (constant) and  $\mathbf{u}_i$  are random effects (has probability distribution)

Generally  $\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{u}})$  i.i.d.; common  $\mathbf{u}_i$  for all j, which leads to correlation; given conditional of  $(y_{i1}, \dots, y_{id}) | \mathbf{u}_i$ , distribution is specified for  $\mathbf{y}$ .

Intuition:  $\beta$  must apply to all subjects identically if they have the same values of the explanatory variables  $\mathbf{x}$ ; but random effects apply to each individual differently while preserving model parsimony (if we wanted to include  $\mathbf{u}_i$  as fixed effect, we'd have to have a separate parameter for each person, so  $p \propto n$ , while now we only have  $\Sigma_{\mathbf{u}}$  added);  $\mathbf{u}_i$  variability reflects that different subjects with identical  $\mathbf{x}_i$  may be heterogeneous due to unobserved variables.

**Example: Random-Intercepts Model.** Let  $\mathbf{z}_{ij}\mathbf{u}_i = u_i$ , i.e. add a random intercept. If  $y_{ij}$  is score on exam j and  $x_i = \text{GPA}$ , then:  $E(y_{ij}|u_i) = \beta_{0j} + \beta_{1j}x_i + u_i = (\beta_{0j} + u_i) + \beta_{1j}x_i$  which adds separate intercept  $\beta_{0j} + u_i$  for each subject!

**Example: Matched-Pairs, Binary-Normal Model.** Let  $(y_{i1}, y_{i2})$  be matched pair of observations for subject i, with success = 1. Compare  $P(y_{i1} = 1)$  and  $P(y_{i2} = 1)$ .

- Marginal model:  $logit[P(y_{ij} = 1)] = \beta_0 + \beta_1 x_j$  for  $x_1 = 0, x_2 = 1$ ; average over all observations and use Binomial; i.e. consider success/failure totals  $n_{11}$  (success/success),  $n_{12}$  (success/failure),  $n_{21}$  (failure/success),  $n_{22}$  (failure/failure).  $\beta_1$  is the log odds ratio comparing success in observation 2 vs. observation 1 (over entire population) so **population-averaged** effect
- **GLMM**: logit[ $P(y_{ij} = 1|u_i)$ ] =  $\beta_0 + \beta_1 x_j + u_i$ ; uses *individual* contingency table;  $\beta_1$  is log odds ratio at the individual level so **subject-specific** effect ( $\mathbf{u}_i$  basically centers regression at mean of each subject, so  $\beta_1$  can be steeper to take care of each individual effect)

The population-averaged = subject-specific effect if **identity link**, but not for any other links. For example above,  $\hat{\beta}_1^{marginal} = \log \frac{n_{+1}/n_{+2}}{n_{1+}/n_{2+}}$  while  $\hat{\beta}_1^{GLMM} = \log \frac{n_{21}}{n_{12}}$ 

**GLMM**  $\rightarrow$  Marginal To find the between-cluster effects for GLMM (for which it's not natural), we have to integrate out  $\mathbf{u}_i$  using LIE; i.e.  $E(y_i) = E[E(y_i|u_i)] = E[g^{-1}(\mathbf{x}_{ij}\beta + \mathbf{z}_{ij}\mathbf{u}_i)]$ ; leads to exact same marginal model if identity link; different form otherwise

#### 9.2 Normal Linear Mixed Model

Start with simplest, normal linear mixed model:  $E(y_{ij}|\mathbf{u}_i) = \mathbf{x}_{ij}\beta + \mathbf{z}_{ij}\mathbf{u}_i$  i.e.  $y_{ij} = \mathbf{x}_{ij}\beta + \mathbf{z}_{ij}\mathbf{u}_i + \epsilon_{ij}$ where  $\beta$  is  $p \times 1$  vector of fixed effects,  $\mathbf{u}_i \sim \mathcal{N}(0, \Sigma_{\mathbf{u}})$  is  $q \times 1$  vector of random effects,  $\epsilon_{ij} \sim \mathcal{N}(0, \sigma_e^2)$ . Generally,  $\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \epsilon_i$  ( $\mathbf{X}_i$  is  $d \times p$  model matrix,  $\mathbf{Z}$  is  $d \times q$  model matrix for random effects,  $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$ ).  $E(\mathbf{y}_i | \mathbf{u}_i) = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i$  and  $var(\mathbf{y}_i) = \mathbf{Z}_i \mathbf{\Sigma}_{\mathbf{u}} \mathbf{Z}_i^T + \sigma_e^2 \mathbf{I}$ .

Random-Intercepts Model:  $\mathbf{u}_i = u_i$ ,  $\mathbf{Z}_i = \mathbf{1}$  and  $var(u_i) = \sigma_u^2$ . Then  $var(\mathbf{y}_i) = \sigma_u^2 \mathbf{1} \mathbf{1}^T + \sigma_e^2 \mathbf{I}$  so that  $corr(y_{ij}, y_{ik}) = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$  for  $j \neq k$  (exchangeable/compound symmetry)

### GLMM Fitting and Inference

No closed-form likelihood, so model fitting is difficult.

Marginal Likelihood/Maximum Likelihood GLMM is two-stage: 1) conditional on  $\mathbf{u}_i$ , fit a GLM with known effect  $\mathbf{z}_{ij}\mathbf{u}_i$ ; 2)  $\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{u}})$  so fit parameters.

Marginal likelihood is: To fit likelihood for  $\beta, \Sigma_{\mathbf{u}}$ , integrate out random effects:

$$L(\beta, \Sigma_{\mathbf{u}}; \mathbf{y}) = f(\mathbf{y}; \beta, \Sigma_{\mathbf{u}}) = \int f(\mathbf{y} | \mathbf{u}; \beta) f(\mathbf{u}; \Sigma_{\mathbf{u}}) d\mathbf{u}$$

**Example:** Logistic-Normal Random-Intercepts Model.

$$L(\beta, \sigma_u^2; \mathbf{y}) = \prod_{i=1}^n \left[ \int_{-\infty}^{\infty} \prod_{j=1}^d \left( \frac{\exp(\mathbf{x}_{ij}\beta + u_i)}{1 + \exp(\mathbf{x}_{ij}\beta + u_i)} \right)^{y_{ij}} \left( \frac{1}{1 + \exp(\mathbf{x}_{ij}\beta + u_i)} \right)^{1 - y_{ij}} f(u_i; \sigma_u^2) du_i \right]$$

Need to approximate this numerically and then maximize: 1) Gauss-Hermite quadrature; 2) Monte-Carlo; 3) Laplace approximation; 4) EM algorithm

GLMM Inference Inference for fixed effects is standard (i.e. LRT for nested models); but for random effects is more complex (because if variance = 0, then on boundary, so likelihood-based inference doesn't work); i.e.  $H_0: \sigma_u^2 = 0$  vs.  $H_a: \sigma_u^2 > 0$  has the mixed distribution of  $\frac{1}{2}\delta_0 + \frac{1}{2}\chi_1^2$  so the p-value is  $\frac{1}{2}P(\chi_1^2 > t_{obs})$ 

#### Marginal Model Fitting and Inference

ML fitting generally only possible for multivariate normal response; if not, we need to use multivariate QL, i.e. GEE.

Multivariate Normal Regression  $\mathbf{y}_i = (y_{i1}, \dots, y_{id})$  and  $y_{ij} = \mathbf{x}_{ij}\beta + \epsilon_{ij}$  with  $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \mathbf{V}_i)$  so that  $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\beta, \mathbf{V})$  where  $\mathbf{X}$  is stacked  $\mathbf{X}_i$  of dimension  $dn \times p$  then we have GLS estimator  $\hat{\beta} = (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$ 

Generalized Estimating Equations (GEE) Lack of discrete distributions that can show correlation structures; use QL-like method, where we specify: 1)  $\mu_{ij} = E(y_{ij})$ ; 2)  $v(\mu_{ij})$ ; 3) working correlation structure  $corr(y_{ij}), y_{ik}$ ). Simple correlation structures:

- Exchangeable:  $corr(y_{ij}, y_{ik}) = \alpha$
- Autoregressive:  $corr(y_{ij}, y_{ik}) = \alpha^{|j-k|}$
- Independent:  $corr(y_{ij}, y_{ik}) = 0$
- Unstructured:  $corr(y_{ij}, y_{ik}) = \alpha_{jk}$

When link function + linear predictor are correct, GEE estimator  $\hat{\beta}$  are still consistent for  $\beta$  even if correlation is incorrect. But standard errors are wrong, so we need to use robust sandwich estimator.

Marginal model:  $g(\mu_{ij}) = \mathbf{x}_{ij}\beta$ ;  $\mathbf{V}_i$  is working covariance matrix for  $\mathbf{y}_i$  based on working correlation matrix  $\mathbf{R}(\alpha)$ ; if  $\mathbf{R}(\alpha)$  is true correlation, then  $\mathbf{V}_i = \text{var}(\mathbf{y}_i)$ . Let  $\mathbf{D}_i = \frac{\partial \mu_i}{\partial \beta}$  be  $d \times p$  matrix of jk elements  $\frac{\partial \mu_{ij}}{\partial \beta_k}$ . Recall: univariate QL estimating equations were:  $\sum_i \left(\frac{\partial \mu_i}{\partial \beta}\right)^T [v(\mu_i)]^{-1} (y_i - \mu_i) = \mathbf{0}$ , so the multivariate analog is **generalized estimating equations**:

$$\sum_{i=1}^{n} \mathbf{D}_{i}^{T} \mathbf{V}_{i}^{-1} (\mathbf{y}_{i} - \mu_{i}) = \mathbf{0}$$

GEE estimator  $\hat{\beta}$  is solution to GEE equations. Iterated method: 1) estimate  $\beta$  given current estimate of  $\alpha$ ; 2) estimate  $\alpha$  given current estimate of  $\beta$  using moment estimation (pairwise empirical correlation). Then:  $(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \mathbf{V}_G/n)$  where:

$$\operatorname{var}(\hat{\beta}) \approx \frac{\mathbf{V}_G}{n} \approx \left[ \sum_{i=1}^n \mathbf{D}_i^T \mathbf{V}_i^{-1} \mathbf{D}_i \right]^{-1} \left[ \sum_{i=1}^n \mathbf{D}_i^T \mathbf{V}_i^{-1} [\operatorname{var}(\mathbf{y}_i)] \mathbf{V}_i^{-1} \mathbf{D}_i \right] \left[ \sum_{i=1}^n \mathbf{D}_i^T \mathbf{V}_i^{-1} \mathbf{D}_i \right]^{-1}$$

Estimated sandwich matrix  $\hat{\mathbf{V}}_G/n$  for  $\hat{\beta}$  replaces  $\beta \to \hat{\beta}$ ,  $\phi \to \hat{\phi}$ ,  $\alpha \to \hat{\alpha}$ , and  $\operatorname{var}(\mathbf{y}_i) \to (\mathbf{y}_i - \hat{\mu}_i)(\mathbf{y}_i - \hat{\mu}_i)^T$ 

Disadvantages of GEE approach:

- 1. No likelihood: can't do likelihood methods (i.e. LRT, deviance) for fit, model comparison, inference
- 2. Categorical data: "correlation" not really natural for discrete data
- 3. Stronger missing data assumption: compared to ML, strong missing data; GEE must have MCAR, but ML only requires MAR

# Important Formulae

$$\begin{split} E[\mathbf{y}^T \mathbf{A} \mathbf{y}] &= \operatorname{trace}(\mathbf{A} \mathbf{V}) + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &\frac{\partial (\mathbf{a}^T \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{a} \\ &\frac{\partial (\boldsymbol{\beta}^T \mathbf{A} \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = (\mathbf{A} + \mathbf{A}^T) \boldsymbol{\beta} \end{split}$$

**Likelihood results**: for log-likelihood l:

$$\begin{split} E\left(\frac{\partial l}{\partial \theta}\right) &= 0 \\ -E\left(\frac{\partial^2 l}{\partial \theta^2}\right) &= E\left(\frac{\partial l}{\partial \theta}\right)^2 \\ -E\left(\frac{\partial^2 l_i}{\partial \beta_j \partial \beta_k}\right) &= E\left[\left(\frac{\partial l_i}{\partial \beta_j}\right)\left(\frac{\partial l_i}{\partial \beta_k}\right)\right] \end{split}$$