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1 Introduction

1.1 GLM Components

Three components of a GLM The 3 components are:

1. Random component: distribution of yi, i.i.d.

• Response variable y has exponential dispersion family

•
∑
i yi is sufficient statistic

2. Linear predictor: η = Xβ with n× p model matrix X and parameters β

• xij is value of explanatory variable xj for observation i

• xi = (xi1, . . . , xip)

• ηi =
∑
j βjxij

• X =

x11 · · · x1p

...
. . .

...
xn1 · · · xnp


3. Link function: g linking mean to linear predictor; g[E(y)] = η = Xβ

• g(µi) =
∑
j βjxij

• Canonical link: g s.t. transform µi to natural parameter θi; then we have concave log-
likelihood, simple likelihood equations, Fisher scoring = Newton-Raphson, etc.

• Binary response: logit (θi = logit(µi) = logit(πi))

• Count response: log (θi = log(µi))

• Continuous response: identity (θi = µi)

Why GLMs? We can transform data instead. But this requires a transformation that yields simulta-
neously: 1) approximate normality; 2) homoscedasticity. This often conflicts with each other.

For GLMs, two separate choices/degrees of freedom: 1) choice of link function; 2) choice of random
component. Gives freedom to model and fit data well without having to worry about normality or
homoscedasticity.

Finally, GLM models g[E(yi)], so we can say that E(yi) = g−1(xiβ), i.e. we have direct inter-
pretability of parameters.

1.2 Quantitative vs. Qualitative Variables

Types of Explanatory Variables In linear predictors, they can be:

• Quantitative: simple linear regression; single term βjxj and single column in X

• Qualitative: ANOVA, odds ratios (binary); if c categories, require c− 1 terms (indicators) in
linear predictor and c− 1 columns in X (i.e. one is baseline)

• Mized: i.e. interaction of quantitative × qualitative; ANCOVA (analysis of covariance due to
interaction term)

• Ordinal: ordered categorical variables can be treated as either quantitative or qualitative
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1.3 Model Matrices and Vector Spaces

Matrices Induce Vector Spaces Consider all possible η = Xβ for all possible β. This is:

η = β1X1 + · · ·+ βpXp

i.e. a linear combination of the columns of X. Thus, η lives in the column space of X:

C(X) = {η : η = Xβ} = {Xβ : β ∈ Rp}

This is called the model space of the GLM. Properties:

• Models with matrices Xa,Xb are equivalent if C(Xa) = C(Xb)

• If model a is nested in model b, then C(Xa) ⊂ C(Xb)

Dimension of C(X) Rank of the model matrix X is equal to number of linearly independent columns,
so:

dim(C(X)) = rank(X) ≤ p

If equal p, then X has full rank. If not full rank, then dim(N(X)) > 0; i.e. model matrix has
redundancies, or aliasing.

• Extrinsic: When variable (usually quantitative) just happens to be linear combination of the
others (collinearity)

• Intrinsic: Inherent redundancy in matrix, i.e. when one-way ANOVA has both intercept term
(all 1) and all indicators (no baseline)

One-Way ANOVA Used for comparing means across different groups/categories, each group labeled
by an indicator Ii. Suppose c groups, i = 1, . . . , c, and j = 1, . . . , ni observations in each group.

g[E(yij)] = β0 + βi = β0 + β1Ii1 + · · ·+ βcIic

Significance test of null hypothesis, H0 : µ1 = · · · = µc. Combining terms:

y = (y11, . . . , y1n1 , . . . , yc1, . . . , ycnc)

β = (β0, β1, . . . , βc)

This results in the non-identifiable, intrinsically aliased model matrix:

X =


1n1

1n1
· · · 0n1

1n2
0n2

· · · 0n2

...
...

. . .
...

1nc 0nc · · · 1nc


1.4 Identifiability and Estimability

Identifiability Parameters β are identifiable if whenever β∗ 6= β ⇒ Xβ∗ 6= Xβ.

Another characterization is Xβ∗ = Xβ ⇒ β∗ = β. This is equivalent to X being invertible;
columns of X being linearly independent; and X having full rank.

Example: One-Way ANOVA. The model matrix above is not identifiable because: β =
(β0, β1, . . . , βc) and β∗ = (β0 + d, β1 − d, . . . , βc − 3) both yield the same linear predictor, namely
β0 + βi. Thus, we drop the baseline category 1, and get:

X =


1n1 0n1 · · · 0n1

1n2 1n2 · · · 0n2

...
...

. . .
...

1nc 0nc · · · 1nc


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Thus, our new parameters are β = (β0, β2, . . . , βc) and β0 = µ1 and βi = µi − µ1.

Ways to achieve identifiability:

• Drop a parameter: first-category (β1 = 0) or last-category baseline (βc = 0)

• Add a constraint:
∑
i niβi = 0 or

∑
i βi = 0

General Identifiability aTβ is identifiable if aTβ∗ 6= lTβ ⇒ Xβ∗ 6= Xβ (allows for linear combinations
and selecting out subsets of parameters)

Estimability aTβ is estimable if ∃ coefficients c such that E(cTy) = aTβ.

Note that the definition implies that all estimable quantities are linear combinations of the means.
If β is identifiable, all quantitatives aTβ are estimable.
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2 Linear Models: Least Squares Theory

Notation: y = (y1, . . . , yn) and µi = E(yi); µ = (µ1, . . . , µn). The covariance matrix is: V = var(y) =
E[(y − µ)(y − µ)T ]

Linear Model: µ = Xβ and V = σ2I (i.e. identity link with i.i.d. homoscedastic errors)

y = Xβ + ε, ε ∼ 0, σ2I

(This additive structure makes no sense for most GLMs, such as logistic, log-linear, etc., but does for
normal linear model and latent variable formulations.)

2.1 Least Squares Fitting

Least Squares How do we get best estimates of parameters β̂ and fitted values µ̂ = Xβ̂? Use least
squares:

min ‖y − µ̂‖2 = min
∑
i

yi −∑
j

βjxij

2

Least squares corresponds to maximum likelihood when yi ∼ N (µi, σ
2).

Normal Equations Minimize squared error by differentiating L(β) =
∑
i(yi−µi)2 =

∑
i(yi−

∑
j βjxij)

2:

∂L

∂βj
=
∑
i

(yi − µ̂i)xij = 0

⇒
∑
i

yixij =
∑
i

µ̂ixij

These are normal equations; solving yields estimates β̂ = X−1µ̂. Uing matrix algebra:

L(β) = ‖y −Xβ‖2

Use matrix derivatives:
∂(aTβ)

∂β
= a

∂(βTAβ

∂β
= (A + AT )β

This yields the matrix normal equations:

XTy = XTXβ̂ ⇒ β̂ = (XTX)−1XTy

Hat Matrix Note that:
µ̂ = X(XTX)−1XTy = Hy

where we define the hat matrix: H = X(XTX)−1XT and is n× n. H projects y onto C(X), the
model space; µ̂ ∈ C(X). Recall that, using β = (XTX)−1XTy:

E(β̂) = β, var(β̂) = σ2(XTX)−1

Bivariate Regression Let E(yi) = β0 + β1xi, with xi being a quantitative variable. Then the normal
equations yield: ∑

i

yi = nβ0 + β1

∑
i

xi,
∑
i

xiyi = β0

∑
i

xi + β1

∑
i

x2
i

⇒ β̂0 = ȳ − β̂1x̄, β̂1 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
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But we see that the Pearson product-moment correlation is:

r = corr(x, y) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
= β̂1

sx
sy

So we see that: β̂1sx = rsy, that is a change in sx in x only yields a change in r in µ̂, so we have
regression towards the mean.

Orthogonal Subspaces, Residuals Key results from linear algebra:

• u,v are orthogonal if uTv = 0

• Orthogonal complement if W, vector subspace of Rn, is the set of all v orthogonal to every
u ∈W.

• dim(W) + dim(W⊥) = n

• Every y ∈ Rn has a unique orthogonal decomposition into y = yW + yW⊥

C(X)⊥ is the set of all vectors that are orthogonal to all vectors in C(X); since the columns are in
C(X), we must have XT

i v = 0, where Xi is a column of X. Thus, XTv = 0, so:

C(X)⊥ = N(XT )

Now we define the residual: e = y −Xβ̂.

From the normal equations, XT (y −Xβ̂) = XTe = 0 so we must have e ∈ N(XT ) = C(X)⊥

2.2 Projections Onto Model Spaces

Projection Matrices A square matrix P is a projection matrix onto vector subspace W iff:

1. y ∈W⇒ Py = y

2. y ∈W⊥ ⇒ Py = 0

Equivalently, P is project iff:

1. P is symmetric

2. P2 = P, i.e. P is idempotent

Properties of projection matrices include:

• P projects onto the space spanned by the columns of P, that is C(P)

• y = yP + yP⊥ uniquely decomposes, so that Py = yP is unique

• Projection matrix onto any subspace W is unique

• If P projects onto W, then I−P projects onto W⊥, so that y = Py + (I−P)y

• Eigenvalues of P are all 0 or 1

• rank(P) = trace(P), since the rank of a symmetric matrix is number of nonzero eigenvalues

• If {Pi} are symmetric matrices such that
∑
i Pi = I, then the following are equivalent: 1) Pi

are idempotent; 2) PiPj = 0 for all i, j; 3)
∑
i rank(Pi) = n

Projection Matrices for Linear Model Spaces Let PX be the projection matrix onto C(X). We
have the following properties:

• If X is full rank, then PX = H

• If X,W are equivalent models, that is C(X) = C(W), then PX = PW

• When model a is nested in b, i.e. C(Xa) ⊂ C(Xb), then PaPb = PbPa = Pa and Pb − Pa

are projection matrices
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Orthogonal Parameters If X1 is orthogonal with X2, then the effects of the reduced model µ = β1X1

is the same as the effects of the full model µ = β1·2X1 + β2·1X2. Suppose that X = (X1 : X2).
Then:

XTX =

(
XT

1 X1 0
0 XT

2 X2

)
,XTy =

(
XT

1 y
XT

2 y

)
⇒ β = (XTX)−1XTy⇒

(
β1

β2

)
=

(
(XT

1 X1)−1XT
1 y

(XT
2 X2)−1XT

2 y

)
so the parameters are exactly the same as when fitted separately.

Pythagoras’ Theorem for Linear Models Because of orthogonality properties of the projection onto
the model space, we can apply Pythagoras’ theorem:

• Unique least squares fit: ‖y −PXy‖ ≤ ‖y − z‖ for all z ∈ C(X)

• True and sample residuals: ‖y − µ‖2 = ‖y − µ̂‖2 + ‖µ̂ − µ‖2 (assuming that the model is
correct, i.e. µ ∈ C(X))

• Data = fit + residuals (sum of squares): ‖y‖2 = ‖µ̂‖2 + ‖y − µ̂‖2

2.3 Linear Model Examples

Null Model E(yi) = β (no explanatory variables) Then, the model matrix and projection matrix are:

X = 1n,PX = X(XTX)−1XT =
1

n
1n1Tn

This yields the fitted values: µ̂ = PXy = ȳ1n

The corresponding sum of squares is: yTy = yTPXy+yT (I−PX)y⇒
∑
i y

2
i = nȳ2 +

∑
i(yi− ȳ)2

One-Way Layout The non-identifiable model matrix and generalized inverses are:

X =


1n1 1n1 · · · 0n1

1n2 0n2 · · · 0n2

...
...

. . .
...

1nc 0nc · · · 1nc

 , (XTX)−


0 0 · · · 0
0 1/n1 · 0
...

...
. . .

...
0 0 · · · 1/nc


Alternatively, we can use the first-category baseline constraint:

X =


1n1

0n1
· · · 0n1

1n2
1n2

· · · 0n2

...
...

. . .
...

1nc 0nc · · · 1nc


Either way, we get the projection matrix:

PX =


1
n1

1n11Tn1
0 · · · 0

0 1
n2

1n2
1Tn2

· · · 0
...

...
. . .

...
0 0 · · · 1

nc
1nc1

T
nc


which yields: µ̂ = PXy = (ȳ1, . . . , ȳ1, . . . , ȳc, . . . , ȳc)

The relevant sum of squares decomposition for one-way ANOVA is:

yij = ȳ + (ȳi − ȳ) + (yij − ȳi)

i.e. obs = overall mean + between-groups + within-groups. This corresponds to using the P0 and
PX projection matrices for the null model and the one-way layout model, respectively, yielding:

yTy = yT [P0 + (PX −P0) + (I−PX)]y

⇒
c∑
i=1

ni∑
j=1

y2
ij = nȳ2 +

c∑
i=1

(ȳi − ȳ)2 +

c∑
i=1

ni∑
j=1

(yij − ȳi)2
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which yields the ANOVA table:
Source Projection matrix df SS
Mean P0 1 nȳ2

Groups PX c− 1
∑c
i=1(ȳi − ȳ)2

Error I−PX n− c
∑c
i=1

∑ni
j=1(yij − ȳi)2

Total I n
∑c
i=1

∑ni
j=1 y

2
ij

Two-Way Layout Suppose we have two facts rather than one (i.e. rows are treatments, columns are
experimental blocks). Let there be i = 1, . . . , r rows and j = 1, . . . , c columns. The model is:

E(yij) = β0 + βi + γj

with β1 = γ1 = 0 for identifiability. Letting y = (y11, . . . , y1c, . . . , yr1, . . . , yrc), the relevant
projections are:

Pr =



1/c · · · 1/c · · · 0 · · · 0

· · ·
. . .

...
...

. . .
...

1/c · · · 1/c · · · 0 · · · 0
...

...
...

. . .
...

...
...

0 · · · 0 · · · 1/c · · · 1/c
...

. . .
...

...
. . .

...
0 · · · 0 · · · 1/c · · · 1/c


,Pc =

1

r

Ir×r · · · Ir×r
...

. . .
...

Ir×r · · · Ir×r



which project onto separate one-way layouts for the row factor and the column factor separately.
That is:

Pry = (ȳ1·, . . . , ȳ1·, . . . , ȳc·, . . . , ȳc·)

Pcy = (ȳ·1, . . . , ȳ·r, . . . , ȳ·1, . . . , ȳ·r)

This yields the ANOVA table:
Source Projection matrix df SS
Mean P0 1 rcȳ2

Rows Pr −P0 r − 1 c
∑r
i=1(ȳi· − ȳ)2

Columns Pc −P0 c− 1 r
∑c
j=1(ȳ·j − ȳ)2

Error I−Pr −Pc + P0 (r − 1)(c− 1)
∑r
i=1

∑c
j=1(yij − ȳi· − ȳ·j + ȳ)2

Total I n = rc
∑r
i=1

∑c
j=1 y

2
ij

2.4 Summarizing Variability in Linear Models

We can use the fact that the residual is in the error space to glean information about the error term ε.

Estimating Error Variance We assume that the error term has var(ε) = σ2I, so we want to estimate
σ2. We use the fact that:

E(yTAy) = trace(AV) + µTAµ

where V is the variance of the error term, that is V = σ2I. Using A = I−PX , we have:

E[yT (I−Px)y] = trace[(I−PX)σ2I] + µT (I−PX)µ = σ2trace(I−PX) = σ2(n− p)

⇒ E

[
yT (I−PX)y

n− p

]
= σ2

So that s2 = yT (I−PX)y
n−p =

∑
i(yi−µ̂i)

2

n−p is an unbiased estimator for σ2; that is, the average error

taken with respect to the dimension of the error space, n− p. s2 is called the error mean square.

SSE and SSR We split up the sums of squares in ANOVA fashion, to get:∑
i

(yi − ȳ)2 =
∑
i

(µ̂i − ȳ)2 +
∑
i

(yi − µ̂i)2
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• Total sum of squares (TSS):
∑
i(yi − ȳ)2, that is the variability in yi after correcting for the

overall mean (i.e. from null model)

• Regression sum of squares (SSR):
∑
i(µ̂i − ȳ)2, that is the variability in yi explained by the

model

• Error sum of squares (SSE):
∑
i(yi − µ̂i)2, that is the variability in yi unexplained by the full

model

For the one-way layout, SSR =
∑
i ni(ȳi− ȳ)2 = Between-groups SS, whereas SSE =

∑
i

∑
j(yij−

ȳi)
2 = Within-groups SS.

Adding Variables on SSE/SSR When we add more explanatory variables, SSE decreases monoton-
ically while SSR increases monotonically (since we can set new βp = 0).

Sequential Sums of Squares Consider p explanatory variables x1, . . . , xp, entered into model 1 at a
time. We get incremental SSR:

SSR(x1), SSR(x2|x1), . . . , SSR(xp|x1, . . . , xp−1)

where, say, SSR(x2|x1) =
∑
i(µ̂i12 − µ̂i1)2 from fitting with both x1, x2 vs. fitting with only x1

(from orthogonal decomposition). Note:

SSR(x1, . . . , xp) = SSR(x1) + SSR(x2|x1) + · · ·+ SSR(xp|x1, . . . , xp−1)

Partial Sums of Squares We can consider full conditional SSR of xi given all other x−i:

SSR(x1|x2, . . . , xp), SSR(x2|x1, x3, . . . , xp), . . . , SSR(xp|x1, . . . , xp−1)

that is, additional variability explained by xi given all other variables are already in the model.

R2

R2 =
SSR

TSS
=
TSS − SSE

TSS
=

∑
i(yi − ȳ)2 −

∑
i(yi − µ̂i)2∑

i(yi − ȳ)2

so R2 measures the proportional reduction in error from null model to full model; R2 ∈ [0, 1].

Multiple Correlation Another way to measure predictive power: sample correlation between yi and
µ̂i. (Note: ¯̂µ = ȳ due to normal equations with intercept term.)

corr(y, µ̂) =

∑
i(yi − ȳ)(µ̂i − ¯̂µ)√∑

i(yi − ȳ)2

√∑
i(µ̂i − ¯̂µ)2

=

∑
i(µ̂i − ȳ)2√∑

i(yi − ȳ)2
√∑

i(µ̂i − ȳ)2

⇒ corr(y, µ̂) = +
√
R2 = R

Adjusted R2 When: 1) n is small; 2) p is large, R2 is overoptimistic. Thus, we can use the adjusted
R2:

adj. R2 = 1− SSE/(n− p)
TSS/(n− 1)

= 1− n− 1

n− p
(1−R2)

2.5 Residuals, Leverage, and Influence

Residuals are in error space ⇒ orthogonal to model space ⇒ contain information in data not explained
by model ⇒ used to investigate model lack of fit.

Plots of Residuals for Model Fit corr(e, µ̂) = 0 due to orthogonality, so we can plot e vs. µ̂ to check
lack of fit (should have slope 0). Possible problems:

1. Heteroscedasticity: “fan-shaped” plot of e vs. µ̂, i.e. non-constant variance

2. Nonlinearity: “U-shaped” plot; signals higher-order terms neded

Other diagnostic: histogram of residuals should be approximately Normal.
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Standardized/Studentized Residuals Recall that:

var(µ̂) = σ2H, var(e) = σ2(I−H)

so the residuals are correlated and don’t have variance 1. We want all residuals to have variance
1, so we standardized:

ri =
yi − µ̂i
s
√

1− hii
so that var(ri) = 1

s2(1−hii)σ
2(1 − hii) ≈ 1. The studentized residual is obtained by estimating

s with all observations besides i. Standardized residual describes how many estimated standard
deviations ei falls from 0.

Leverage hii = [H]ii is leverage of observation i. If hii ≈ 1, then yi has a large influence on µ̂i.
Properties:

• µ̂i =
∑
j hijyj ⇒

∂µ̂i
∂yi

= hii

• Since we assume yi are uncorrelated:

Cov(yiµ̂i) = Cov

yi,
∑
j

hijyj

 =
∑
j

hijCov(yi, yj) = hiiCov(yi, yi) = hiiσ
2

and since varµ̂i = σ2hii, we have:

corr(yi, µ̂)i) =
σ2hii√
σ2 · σ2hii

=
√
hii

• With p explanatory variables, leverages have mean p
n

• Larger deviation of xi from x̄ yields higher leverage

Cook’s Distance To be influential, observation must have: 1) large leverage; 2) large standardized
residual. We can combine measures to get Cook’s distance:

Di = r2
i

[
hii

p(1− hii)

]
=

(yi − µ̂i)2

ps2

hii
(1− hii)2

“Adjusting for Other Variables” The effect of xi in a model of x1, . . . , xp is the same as: 1) regress-
ing y on x−i; 2) regressing xi on x−i; 3) effect of regressing residuals from (1) on residuals from
(2).

Example. Consider E(yi) = β1·2xi1 + β2·1xi2. 1) Regress E(yi) = β2xi2; 2) Regress E(xi1) =

β12xi2. The normal equations are: 1)
∑
i xi2(yi − β̂2xi2) = 0; 2)

∑
i xi2(xi1 − β̂12xi2) = 0. Similar

equations for multiple regression. Plugging in and solving yields:

β̂1·2 =

∑
i(yi − ˆβ2xi2)(xi1 − β̂12xi2)∑

i(xi1 − β̂12xi2)2

But this is exactly the effect of regressing residuals from (1), yi − β̂2xi2 on the residuals from (2),

xi1 − β̂12xi2. From this we also see that plugging into the regression of residuals equation,

β̂2·1 = β̂2 − β̂1·2β̂12

i.e. the subtracted term represents omitted variable bias from trying to estimate the effect of x1

without including x2.
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2.6 Gauss-Markov Theorem

Why least squares? We’ve noted a number of good properties, such as:

• The least squares estimate µ̂ is maximally correlated with y

• It yields nice interpretability in terms of orthogonal subspaces, and orthogonal decomposition in
terms of fitted values and residuals

• It corresponds to maximum likelihood estimation under normality assumption

We add another optimality condition about least squares:

Gauss-Markov Theorem. If E(y) = Xβ holds and X has full rank with var(y) = σ2I, then the

least squares estimator β̂ = (XTX)−1XTy is the best linear unbiased estimator (BLUE) of β. That is,

for any quantity aTβ, the estimator aT β̂ has the minimum variance among all estimators that are: 1)
linear in y; 2) unbiased.

If we add normality to y, then the least squares estimator becomes minimum variance unbiased
estimator (MVUE); i.e., the restriction of linearity in y is removed.

2.7 Generalized Least Squares

If y not i.i.d, that is var(y) = σ2V with V 6= I, use GLS. Use spectral decomposition to write V =
QΛQT and V1/2 = QΛ1/2QT for orthogonal Q. Let y∗ = V−1/2y and X∗ = V−1/2X; then E(y∗) =
V−1/2Xβ = X∗β and var(y∗) = σ2V−1/2V(V−1/2)T = σ2I so y∗ satisfies OLS.

Minimize squared error: (y∗−X∗β)T (y∗−X∗β) = (y−Xβ)TV−1(y−Xβ) so the normal equations
are: [(X∗)TX∗]β = (X∗)Ty∗ ⇒ (XTV−1X)β = XTV−1y and therefore:

β̂GLS = (XTV−1X)−1XTV−1y

• Unbiased: E(β̂GLS) = (XTV−1X)−1XTV−1E(y) = β

• Covariance: var(β̂GLS) = σ2(XTV−1X)−1

• BLUE estimator for β; MVUE and ML under normality

• Hat matrix: H = X(XTV−1X)−1XTV−1 not necessarily projection because need not be symmet-

ric (µ̂ = Xβ̂GLS = X(XTV−1X)−1XTV−1y)

• Generalized projection: if u ∈ C(X), then Hu = u; and if v ∈ C(X)⊥ = N (XT ), then Hv = 0
(since (u,v) = 0)

• Estimated variance: If rank(X) = r, s2 = (y∗−X∗β̂)T (y∗−X∗β̂)
n−r = (y−µ̂)TV−1(y−µ̂)

n−r
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3 Normal Linear Models

Normal Linear Model: In addition to µ = Xβ and V = var(y) = σ2I, assume that yi follow Normal
distribution, that is: y ∼ N (Xβ, σ2I), or y = Xβ + ε where ε ∼ N (0, σ2I).

3.1 Normal and Related Distributions

Multivariate Normal Denoted y ∼ N (µ,V); properties include:

• PDF: f(y) = (2π)−n/2|V|−1/2 exp
[
− 1

2 (y − µ)TV−1(y − µ)
]

• x = Ay + b⇒ x ∼ N (Aµ+ b,AVAT )

• If y =

(
y1

y2

)
, i.e. partitions, with V =

(
V11 V12

V21 V22

)
, then:

y1 ⊥ y2 iff V12 = 0 (i.e. independence iff uncorrelated)

• As corollary, if V = σ2I, then yi ∼ N (µi, σ
2) and yi ⊥ yj for all i, j

Chi-Squared Denoted χ2
p for p degrees of freedom:

• If yi ∼ N (0, 1) i.i.d, then
∑p
i=1 y

2
i ∼ χ2

p

• Generally: if y ∼ N (µ,V) is p-dimensional, then:

(y − µ)TV−1(y − µ) ∼ χ2
p

• Moments: E[χ2
p] = p and var(χ2

p) = 2p

t Distribution Denoted tp for p degrees of freedom:

• If z ∼ N (0, 1) and x ∼ χ2
p, x ⊥ z, then:

z√
x/p
∼ tp

• Symmetric about 0: E(tp) = 0 and var(tp) = p
p−2 (p > 2)

• Converges to N (0, 1) as p→∞
• Suppose y1, . . . , yn ∼ N (µ, σ2), sample mean ȳ and sample variance s2. Under null hypothesis
H0 : µ = µ0:

z =
ȳ − µ0

σ/
√
n
∼ N (0, 1) and x =

(n− 1)s2

σ2
∼ χ2

n−1

⇒ z√
x/(n− 1)

=
ȳ − µ0

s/
√
n
∼ tn−1

and larger values of |t| mean stronger evidence against H0

F Distribution Denoted Fp,q for degrees of freedom p, q:

• If x ∼ χ2
p, y ∼ χ2

q, x ⊥ y, then:
x/p

y/q
∼ Fp,q

• Mean: E(Fp,q) = q
q−2 (for q > 2)

• (tp)
2 = F1,p

11



Noncentral Distributions Used to analyze test statistics when null hypothesis does not hold.

• Chi-Squared: If yi ∼ N (µi, 1), then noncentrality parameter λ =
∑p
i=1 µi and

∑p
i=1 yi ∼

χ2
p,λ

Moments are: E(χ2
p,λ) = p+ λ; var(χ2

p,λ) = 2(p+ 2λ)

More generally, if p-dimensional y ∼ N (µ,V), then: yTV−1y ∼ χ2
p,λ with λ = µTV−1µ

• t Distribution: If z ∼ N (µ, 1), x ∼ χ2
p, x ⊥ z, then:

z√
x/p
∼ tp,µ

with degrees of freedom p and noncentrality µ (from z)

Skewed in direction of sign of µ; tp,µ → N (µ, 1) as p→∞
• F Distribution: If x ∼ χ2

p,λ, y∼ χ2
q, x ⊥ y, then:

x/p

y/q
∼ Fp,q,λ

with mean 1 + λ
p for large q.

Cochran’s Theorem and Normal Quadratic Forms Some preliminary results:

• If y ∼ N (µ,V) and A is symmetric, then:

yTAy ∼ χ2
r,µTAµ ⇔ AV is idempotent of rank r

• Letting A = P for y ∼ N (µ, σ2I), and since y/σ ∼ N (µ/σ, I):

yTPy/σ2 ∼ χ2
r,µTPµ/σ2

• Using standardized (y − µ)/σ, we have the important result:

1

σ2
(y − µ)TP(y − µ) ∼ χ2

r ⇔ P is projection matrix of rank r

which tells us: degrees of freedom = rank of P = dimension of vector space projected to by P

Cochran’s Theorem. Suppose n observations y ∼ N (µ, σ2I) and P1, . . . ,Pk are projection
matrices s.t.

∑
i Pi = I. Then:

1. {yTPiy} are independent

2. 1
σ2 yTPiy ∼ χ2

ri,λi
, with ri = rank(Pi) and λi = 1

σ2µ
TPiµ

3.2 Significance Tests for Normal Linear Model

Cochran’s Theorem is useful because it can be applied to prove more or less any significant test result
for normal linear models.

Introduction: One-Way ANOVA E(yij) = β0 + βi, with baseline constraint. Consider H0 : µ1 =
· · · = µc, or equivalently H0 : β1 = · · · = βc. Under H0, we have E(yij) = β0, or the null model.
We use decomposition:

I = P0 + (PX −P0) + (I−PX)

with PX having blocks 1
ni

1ni1
T
ni and P0 = 1

n1n1Tn . Applying Cochran’s Theorem, PX − P0 and
I−PX are both projection matrices and are perpendicular, so:

1

σ2
yT (PX −P0)y =

1

σ2

c∑
i=1

ni(ȳi − ȳ)2 ∼ χ2
c−1,λ

1

σ2
yT (I−PX)y =

1

σ2

c∑
i=1

ni∑
j=1

(yij − ȳi)2 ∼ χn−c

12



where λ = 1
σ2µ

T (PX −P0)µ = 1
σ2

∑
i ni(µi − µ̄)2 and the quadratic forms are independent. Thus,

we can create an F test:

F =

∑
i ni(ȳi − ȳ)2/(c− 1)∑

i

∑
j(yij − ȳi)2/(n− c)

∼ Fc−1,n−c,λ

Under H0, we have λ = 0, df1 = c − 1, df2 = n − c, so expected value n−c
n−c−2 , and larger F values

are stronger evidence against H0.

p-value = P (Fc−1,n−c > Fobs)

Source df SS Fobs
Mean 1 nȳ2

Groups c− 1
∑c
i=1(ȳi − ȳ)2

∑
i ni(ȳi−ȳ)2/(c−1)∑

i

∑
j(yij−ȳi)2/(n−c)

∼ Fc−1,n−c,λ

Error n− c
∑c
i=1

∑ni
j=1(yij − ȳi)2

Total n
∑c
i=1

∑ni
j=1 y

2
ij

Comparing Nested Models Let simpler model be M0 with p0 parameters, projection P0, and com-
plicated model be M1 with p1 parameters, projection P1. Decomposition yields I = P0 + (P1 −
P0) + (I−P1) with the sum of squares decomposition:

yTy = yTP0y + yT (P1 −P0)y + yT (I−P1)y

yT (P1 −P0)y = yT (I−P0)y− yT (I−P1)y =
∑
i(yi − µ̂i0)2 −

∑
i(yi − µ̂i1)2 = SSE0 − SSE1 =∑

i(µ̂i1 − µ̂i0)2 = SSR(M1|M0). Similarly, yT (I −P1)y =
∑
i(yi − µ̂i1)2 = SSE1. I −P1 has df

n− p1 while P1 −P0 has df p1 − p0. Thus, we have:

1

σ2
yT (P1 −P0)y =

SSE0 − SSE1

σ2
∼ χ2

p1−p0,λ

1

σ2
yT (I−P1)y =

SSE1

σ2
∼ χ2

n−p1

with λ = 1
σ2µ

T (P1 −P0)µ = ‖µ1−µ0‖2
σ2 which is 0 under H0. Thus, under H0:

F =
(SSE0 − SSE1)/(p1 − p0)

SSE1/(n− p1)
=
SSR(M1|M0)/(p1 − p0)

s2
∼ Fp1−p0,n−p1,λ

where s2 is the σ2 estimator under M1.

Example: All Effects Equal 0. Let M1 : E(yi) = β0 +β1xi1 + · · ·+βp−1xi,p−1 and M0 : E(yi) =
β0 be the null model. Consider H0 : β1 = · · · = βp−1 = 0. For M0, we have P0 = 1

n1n1Tn and the
SS decomposition is:

yTy = yTP0y
T + yT (P1 −P0)y + yT (I−P1)y

with the same ANOVA table as in the one-way layout.

Non-null Behavior of F Statistic. How large can we expect SSE0 − SSE1 = ‖µ̂1 − µ̂0‖2 to be
under non-null? Let µ1 be true mean under M1, and µ0 be projection of µ1 onto M0. Then the
numerator has expectation:

E‖µ̂1− µ̂0‖2 = E[yT (P1−P0)y] = trace[(P1−P0)σ2I]+µT1 (P1−P0)µ1 = σ2(p1−p0)+‖µ1−µ0‖2

E

[
‖µ̂1 − µ̂0‖2

p1 − p0

]
= σ2 +

‖µ1 − µ0‖2

p1 − p0

while the denominator has expectation:

E‖y − µ̂1‖2 = E[yT (I−P1)y] = trace[(I−P1)σ2I] + µT1 (I−P1)µ1 = (n− p1)σ2

E

[
‖y − µ̂‖2

n− p1

]
= σ2

13



regardless of whether H0 is true.

Power. The power of the F test is defined as:

Power = P (Fp1−p0,n−p1,λ > Fp1−p0,n−p1(0.95))

i.e. the probability that the nocentral F rv exceeds the F statistic under the null H0.

Testing General Linear Hypothesis H0 : Λβ = 0 for l × p matrix Λ; l independent constraints on
β. Properties include:

• Estimator Λβ̂ is BLUE (Gauss-Markov)

• Λβ̂ ∼ N [Λβ, σ2Λ(XTX)−1ΛT ]

• (Λβ̂ − 0)T [σ2Λ(XTX)−1ΛT ]−1(Λβ̂ − 0) ∼ χ2
l

• F = (Λβ̂)T [Λ(XTX)−1ΛT ]−1(Λβ̂)/l
SSE/(n−p) ∼ Fl,n−p since SSE/σ2 ∼ χ2

n−p

• Λβ = 0 is special case M0 of full model; let W be matrix s.t. C(W) ⊥ C(Λ); then β = Wγ,
so E(y) = Xβ = XWγ = X0γ for simpler X0 = XW.

Example: Single Parameter Equals 0. For testingH0 : βj = 0, let Λ = λ = (0, 0, . . . , 0, 1, 0, . . . , 0)
in jth slot. This yields:

F =
(SSE0 − SSE1)/1

SSE1/(n− p)
=

β̂2
j

(SEj)2
∼ F1,n−p

3.3 Confidence Intervals for Normal Linear Models

Confidence intervals yield more information than significance tests because they provide the entire range
of plausible values. We obtain confidence intervals by inverting significance tests.

For Parameter Invert test of H0 : βj = βj0, yielding test statistic:

t =
β̂j − βj0
SEj

∼ tn−p

where SEj =
√

[s2(XTX)−1]jj of estimated covariance matrix of β̂. Residuals uncorrelated with β̂

since error space/model space, and s2 function of residuals, so β̂ ⊥ s2 and numerator/denominator
are independent.

100(1− α)% CI has p-value > α, or |t| < tα/2,n−p, so that:

βj0 ∈ β̂j ± tα/2,n−p(SEj)

For True Mean To get CI for fitted value (i.e. true mean), note if µ̂ = x0β̂, then var(µ̂) = var(x0β̂) =
σ2x0(XTX)−1xT0 so that when we standardize,

z =
x0β̂ − x0β

σ
√

x0(XTX)−1xT0
∼ N (0, 1)

⇒ t =
x0β̂ − x0β

s
√

x0(XTX)−1xT0
∼ tn−p

since (n− p)s2/σ2 ∼ χ2
n−p by Cochran. The resulting CI for µ is:

µ ∈ x0β̂ ± tα/2,n−ps
√

x0(XTX)−1xT0

Note if x0 = xi for some obs i, then the square root term is just hii.
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For Future Prediction At given x0, suppose predict future y; y = x0β+ε, ε ∼ N (0, σ2). From fitting,

y = x0β̂ + e where e = y − µ̂, so that:

var(e) = var(y − µ̂) = var(y) + var(µ̂) = σ2(1 + x0(XTX)−1xT0 )

since y ⊥ y1, . . . , yn used for µ̂. Thus:

y − µ̂
s
√

1 + x0(XTX)−1xT0
∼ tn−p

so the 100(1− α)% prediction interval is:

y ∈ µ̂± tα/2,n−ps
√

1 + x0(XTX)−1xT0
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4 Generalized Linear Models: Fitting and Inference

Generalized Linear Model: 1) Non-normal y; 2) Non-identity g.

4.1 Exponential Dispersion Family

Properties For yi from EDF:

• PDF: f(yi; θi, φ) = exp
[
yiθi−b(θi)

a(φ) − c(yi, φ)
]

• θi is natural parameter; φ is dispersion parameter

• Generally, a(φ) = 1 (natural exponential family); a(φ)φ/wi for weight wi known (i.e. binomial)

• µi = E(yi) = b′(θi) and var(yi) = b′′(θi)a(φ) (using exp. score = 0 and second partials of l
results)

Poisson, Binomial, Normal, Gamma All in EDF:

• Poisson: f(yi;µi) =
µ
yi
i e
−µi

yi!
= exp[yi logµi − µi − log(yi!)] so we have:

θi = log(µi), b(θi) = exp(θi), a(φ) = 1

• Binomial: Let niyi ∼ Bin(ni, πi) so yi is sample proportion.

f(yi;ni, πi) =

(
ni
niyi

)
πniyii (1− πi)ni−niyi = exp

[
yiθi − log(1− exp(θi))

1/ni
+ log

(
ni
niyi

)]
where θi = log[πi/(1− πi)] = logit(πi and b(θi) = log[1 + exp(θi)], a(φ) = 1/ni

• Normal: f(yi;µi, σ
2) = 1√

2πσ
exp

[
− (yi−µi)2

2σ2

]
= exp

[
yiµi−µ2

i /2
σ2 − 1

2 log(2πσ2)− y2i
2σ2

]
:

θi = µi, b(θi) =
1

2
θ2
i , a(φ) = σ2

• Gamma: f(y;µ, k) = (k/µ)k

Γ(k) y
k−1e−ky/µ with E(y) = µ and var(y) = µ2/k

θ = − 1

µ
, b(θ) = − log(−θ), φ =

1

k

Canonical Link g : µi 7→ θi results in direct relationship θi = ηi =
∑
j βjxij (good things: Newton-

Raphson = Fisher scoring, always concave, sufficient statistics = expected values)

4.2 Likelihood Equations and Asymptotics

Sufficient Statistics l(β) =
∑
i li =

∑
i
yiθi−b(θi)

a(φ) +
∑
i c(yi, φ). When g is canonical link, θi =∑

j βjxij , so when a(φ) is constant, the kernel is:∑
i

yi(
∑
j

βjxij) =
∑
j

βj(
∑
i

yixij)

so the sufficient statistics are
∑
i yixij for all j = 1, . . . , p

Likelihood Equations For ML, want ∂l(β)
∂βj

= 0 for all j; using chain rule:

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

∂li
∂θi

=
yi − µi
a(φ)

,
∂µi
∂θi

= b′′(θi) =
var(yi)

a(φ)
,
∂ηi
∂βj

= xij

⇒ ∂l(β)

∂βj
=
∑
i

∂li
∂βj

=
∑
i

(yi − µi)xij
var(yi)

∂µi
∂ηi

= 0

Let D = diag
(
∂µi
∂ηi

)
, and V be covariance matrix. Then:

XTDV−1(y − µ) = 0
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Mean-Variance Relation If yi in EDF, then relation between mean and variance var(yi) = v(µi)
completely determines distribution.

• Poisson: v(µi) = µi

• Binomial: v(µi) = µi(1−µi)
ni

• Normal: v(µi) = σ2 (constant)

• Gamma: v(µi) =
µ2
i

k

Asymptotics of Parameter Estimators By ML properties, for large n β̂ is: 1) efficient; 2) approxi-

mately Normal. Moreover, covariance matrix of β̂ is var(β̂) = J−1, the Fisher information matrix:

J =

(
−E

[
∂2l(β)

∂βi∂βj

])
Using the ML second derivative result,

−E
(

∂2li
∂βj∂βk

)
= E

[(
∂li
∂βj

)(
∂li
∂βk

)]
=

xijxik
var(yi)

(
∂µi
∂ηi

)2

⇒ −E
[
∂2l(β)

∂βi∂βj

]
=
∑
i

xijxik
var(yi)

(
∂µi
∂ηi

)2

so let W = diag
(

(∂µi/∂ηi)
2

var(yi)

)
, then we have: J = XTWX

β̂ ∼ N [β, (XTWX)−1]

Asymptotics of Fitted Values Note that η̂ = Xβ̂ ⇒ var(η̂) = Xvar(β̂)XT ≈ X(XTWX)−1XT . We
want var(µ̂, and we can use delta method:

h(y)− h(µ) ≈ h′(µ)(y − µ)⇒ var[h(y)] ≈ [h′(µ)]2var(y)

In the vector vase, var[h(y)] ≈
(
∂h
∂µ

)
V
(
∂h
∂µ

)T
for the Jacobian

(
∂h
∂µ

)
. So using D = diag(∂µi/∂ηi):

var(µ̂) ≈ DX(XTWX)−1XTD

Model Misspecification Even if we specified wrong distribution for y, as long as we used EDF: β̂
p−→ β

as long as linear predictor and link are correct.

4.3 GLM Parameter Inference: LRT, Wald, Score

In order to: 1) say if a parameter estimate is significantly non-zero; 2) establish confidence intervals for
the true parameters, we need tests of significance. There are three standard methods:

Likelihood-Ratio Test Let H0 : βj = 0. Then define l0 = maxβ l(β)|βj=0 and l1 = maxβ l(β). Then
as n→∞:

−2(l0 − l1) ∼ χ2
1

This can be extended to multiple parameters β = (β0, β1) and H0 : β0 = 0 leads to χ2
|β0| and

general linear hypothesis H0 : Λβ = 0 leads to χ2
l where Λ adds l constraints.

Wald Test Recall: SEβ̂ ≈
√

(XTWX)−1 so estimating that using: ŜEβ̂ =

√
(XTŴX)−1 where Ŵ is

W = (∂µi)/∂ηi)
2

var(yi)
evaluated at η̂i =

∑
j β̂jxij . To test H0 : βj = βj0, using ŜEj = (ŜEβ̂)jj :

z =
β̂j − βj0
ŜEj

∼ N (0, 1)
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z2 ∼ χ2
1

For multiple parameters β = (β0, β1), testing H0 : β0 = 0:

z2 = β̂T0 [v̂ar(β̂)]−1
β0
β̂0 ∼ χ2

|β0|

where [
ˆ

var( ˆ )β]β0 = (XTŴX) using only the rows/columns corresponding to β0.

Problems: 1) Useless at boundary; 2) Depends on scale

Score Test Testing H0 : β = β0:

z2 =
[∂l(β)/∂β0]2

−E[∂2l(β)/∂β2
0 ]
∼ χ2

1

where the derivatives are evaluated at β = β0.

Confidence Intervals We again get CI by inverting the test.

• Likelihood-Ratio Test: For H0 : β = β0: β0 ∈ {β : −2[l(β)− l(β̂)] > χ2
1(α)}

• Wald Test: |β̂−β0|
SE < zα/2 ⇒ β0 ∈ β̂ ± zα/2(SE)

• Score Test: Depends on likelihood; generally close to Wald interval

When n small or β̂ very non-normal (i.e. Wald and LRT CI differ greatly) then Wald fails, so use
LRT.

Profile Likelihood For multiparameter models, i.e. β = (β0, ψ), best CI is obtained by maximizing
l(β) at each possible value of β0. That is: 1) plug in β0 into l(β); 2) maximize l(β) over all other ψ,

yielding maximum nuisance parameters ψ̂(β0); 3) use the profile log-likelihood function l(β0, ψ̂(β0)).
The profile likelihood CI for true β0 is:

−2[l(β0, ψ̂(β0))− l(β̂0, ψ̂)] < χ2
1(α)

4.4 Deviance and Model Checking/Comparison

For normal linear models, we used Cochran’s Theorem and F statistics to tell whether model fit well
(nested models). Can’t do that for GLMs, so we use deviance (LRT).

Deviance Compare log-likelihood of model with saturated model; let l(µ; y) be log-likelihood in terms
of µ = g−1(θ), then l(µ̂; y) is maximum of log-likelihood under model, l(y; y) is log-likelihood
under saturated model (separate parameter for each obs µ̃ = y).

Likelihood-ratio statistic: −2[l(µ̂; y)− l(y; y)] = 2
∑
i
yi(θ̃−θ̂)−b(θ̃)+b(θ̂)

a(φ)

Generally, a(φ) = φ/wi, so then:

Deviance D(y; µ̂) = 2
∑
i

wi[yi(θ̃ − θ̂)− b(θ̃) + b(θ̂)]

and: −2[l(µ̂; y)− l(y; y)] = D(y;µ̂)
φ (so LRT statistic = scaled deviance)

• Poisson GLM: Using canonical link, θ̂i = log(µ̂i) and b(θi) = exp(θi), with wi = 1 so:

D(y; µ̂) = 2
∑
i

[yi log(yi/µ̂i)− yi + µ̂i]

If there is intercept term, likelihood equations yield
∑
i yi =

∑
i µ̂i:

D(y; µ̂) = 2
∑
i

yi log(yi/µ̂i)

• Normal GLM: D(y; µ̂) = 2
∑
i

[
yi(yi − µ̂i)− y2

i

2 +
µ̂2
i

2

]
=
∑
i(yi − µ̂i)2 = SSE
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Maximize likelihood⇔ Minimize deviance

Model Comparison In normal linear models, we used SSE comparisons to compare models. Generalize
to GLMS:

1. Likelihood-Ratio Test: SupposeM0 nested inM1, so l(µ̂1; y) ≥ l(µ̂0; y). Consider likelihood-
ratio test of H0 : M0 holds:

−2[l(µ̂0; y)− l(µ̂1; y)] = −2[l(µ̂0; y)− l(y; y)] + 2[l(µ̂1; y)− l(y; y)] = D(y; µ̂0)−D(y; µ̂1)

if φ = 1, as in Poisson/Binomial, which has deviance form, so:

G2(M0|M1) = D(y; µ̂0)−D(y; µ̂1) = 2
∑
i

wi[yi(θ̂1i − θ̂0i)− b(θ̂1i + b(θ̂0i)]

G2(M0|M1) = D(y; µ̂0)−D(y; µ̂1) ∼ χp1−p0
under the null hypothesis (M0 holds)

Using the fact that deviance ≈ LRT statistic so D(y; µ̂1) ∼ χ2
n−p1 , we have:

[D(M0)−D(M1)]/(p1 − p0)

D(M1)/(n− p1)
∼ Fp1−p0,n−p1

2. Score/Pearson Statistics: For GLM with var(yi) = v(µi) and φ = 1:

X2 =
∑
i

(yi − µ̂i)2

v(µ̂)

This is the generalized Pearson chi-squared statistic; original wasX2 =
∑
i(obs−fitted)2/fitted

which holds when GLM is Poisson (v(µ̂) = µ̂). For testing nested M0 in M1:

X2(M0|M1) =
∑
i

(µ̂1i − µ̂0i)
2

v(µ̂0i)
∼ χ2

p1−p0

which is quadratic approximation to G(M0|M1), the deviance statistic. Often has better
behavior asymptotically.

Asymptotics of Residuals Unlike in LM case where y = µ̂+(y−µ̂) yielded orthogonal decomposition,
in GLM Case, µ = g−1(η) need not constitute vector space, so projections/orthogonality don’t hold.
We suppose that µ̂ and residuals are asymptotically uncorrelated. Using W and D as before, we
have: V = var(y) = DW−1D, and var(y) ≈ var(µ̂)+var(y−µ̂) under asymptotic uncorrelatedness.
Thus,

var(y − µ̂) ≈ V − var(µ̂) ≈ DW−1D−DX(XTWX)−1XTD

⇒ var(y − µ̂) ≈ DW−1/2[I−W1/2X(XTWX)−1XTW1/2]W−1/2D = V1/2[I−HW ]V1/2

where HW = W1/2X(XTWX)−1XTW1/2 is projection matrix (hat matrix) for V −1/2(y − µ).

Pearson, Deviance, Standardized Residuals Three kinds of residuals for GLMS:

1. Pearson residual ei =
yi − µ̂i√
v(µ̂i)

Note that: X2 =
∑
i e

2
i ∼ χ2

1 for Poisson and Binomial; for Poisson, ei = (yi − µ̂i)/
√
µ̂i,

whereas for Binomial, ei = (yi − π̂i)/
√
π̂i(1− π̂i)/ni.

2. Deviance residual di = 2wi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)] so that D(y; µ̂) =
∑
i di. Then:

Deviance residual:
√
di × sign(yi − µ̂i)

3. Standardized residual: Pearson/deviance residuals have variance < 1 because compare yi
to µ̂i rather than µi. Using generalized hat matrix HW = W1/2X(XTWX)−1XTW1/2 and

ĥii = (ĤW )ii, we have:

Standardized residual: ri =
ei√

1− ĥii
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4.5 GLM Fitting

Unlike normal equations, likelihood equations are nonlinear in β̂, so need iterative schemes.

Newton-Raphson Use quadratic approximations to iterate solution to maximum:

u =

(
∂l(β)

∂β1
, . . . ,

∂l(β)

∂βp

)

H =

(
∂2l(β)

∂βi∂βj

)
where H is the Hessian matrix, or observed information. Let u(t),H(t) be score/Hessian evaluated
at β(t). Using Taylor:

l(β) ≈ l(β(t)) + (u(t))T (β − β(t)) +
1

2
(β − β(t))TH(t)(β − β(t))⇒ ∂l(β)

∂β
≈ u(t) + H(t)(β − β(t)) = 0

⇒ β(t+1) = β(t) − (H(t))−1u(t)

Fisher Scoring Uses expected information, not observed information. Recall:

J = −E
[
∂2l(β)

∂βi∂βj

]
= XTWX

so let J (t) be J evaluated at β(t); J (t) = XTW(t)W. Equivalently to Newton-Raphson:

β(t+1) = β(t) + (J (t))−1u(t)

Example: Binomial Parameter. Consider single set of binomial observation, ny ∼ Bin(n, π)
and consider estimating the maximum parameter π̂ (rather than β, as usual). Then l(π) =

ny log π + (n − ny) log(1 − π) + log
(
n
ny

)
. Thus, the derivatives are: u = ∂l(π)

∂π = ny−nπ
π(1−π) and

H = −
[
ny
π2 + n−ny

(1−π)2

]
⇒ E[H] = n

π(1−π) So we can use:

1. Newton-Raphson: π(t+1) = π(t) − (H(t))−1u(t), which does do the right thing

2. Fisher Scoring: π(t+1) = π(t) +
[

n
π(t)(1−π(t))

]−1
ny−nπ(t)

π(t)(1−π(t))
= π(t) + (y − π(t)) = y so achieved

in one step.

Fisher Scoring = IRLS Fisher scoring is equivalent to iteratively reweighted least squares on the

adjusted response, zi =
∑

)jxijβ
(t)
j + (yi − µ(t)

i )
∂η

(t)
i

∂µ
(t)
i

= η
(t)
i + (yi − µ(t)

i )
∂η

(t)
i

∂µ
(t)
i

. For the linear model

z = Xβ + ε, with ε covariance V, the generalized LS estmator is: β̂ = (XTV−1X)−1XTV−1z.

The score vector is u = XTDV−1(y− µ), and we see that DV−1 = WD−1 for diagonal V. Thus,
u = XTWD−1(y − µ), and the Fisher scoring equations are: J (t)β(t+1) = J (t)β(t) + u(t). Thus,

(t)β(t) = XTW(t)Xβ(t)+xTW(t)(D(t))−1(y−µ(t)) = XTW(t)[Xβ(t)+(D(t))−1(y−µ(t))] = XTW(t)z(t)

and J (t)β(t+1) = XTW(t)Wβ(t+1) so that:

β(t+1) = (XTW(t)X)−1XTW(t)z(t)

Equivalence for Canonical Link For canonical link θi = ηi, we have: ∂µi/∂ηi = b′′(θi), so ∂li
∂βj

=

(yi−µi)xij
a(φ) ⇒ ∂2li

∂βj∂βk
= − xij

a(φ)

(
∂µi
∂βk

)
which is independent of yi, so:

H = −J

and so Newton-Raphson = Fisher scoring for GLMs with canonical link.
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4.6 Model/Variable Selection

Stepwise Procedures Forward selection vs. backward elimination

Bias-Variance Tradeoff MSE = variance + (bias)2 so simpler model has higher bias, but may have
lower variance ⇒ lower overall MSE.

AIC Kullback-Leibler divergence: KL[p, pM (β̂M )] = E
[
log
(

p(y∗)

pM (y∗;β̂M )

)]
measures distance between

true distribution p(·) and model fitted distribution pM (·; β̂M )

AIC: minimize E[KL(p, pM (β̂M ))] ⇔ minE[−E log(pM (y; β̂M ))] where outer with respect to set

of models, inner with respect to p. l(β̂M ) is biased estimator for E[E log(pM (y; β̂M ))] but can be
reduced using number of parameters in M . Thus:

AIC = −2[l(β̂) + |M |]

where |M | is the number of parameters in model M .

Predictive Power Two measures of summarizing predictive power (i.e. R2 in linear models):

1. corr(y, µ̂): analog of multiple correlation (but not necessarily non-decreasing with more pa-
rameters)

2. Likelihood Ratio: let lM be maximized log-likelihood for model M ; lS for saturated; l0 for
null model, then:

lM − l0
lS − l0

∈ [0, 1]

Collinearity Relations among explanatory variables may reduce validity and effects:

var(β̂j) =
1

1−R2
j

[
σ2∑

i(xij − x̄)@

]
where R2

j is R2 in predicting xj using x−j and V IFj = 1
1−R2

j
is variance inflation factor. (So as

variables are collinear, R2
j goes up and var(β̂j)→∞.)
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5 Binary Models

For binary response, assume niyi ∼ Bin(ni, πi). Two sample sizes: 1) ni is number of Bern trials in
single binomial obs; 2) N is number of binomial obs. Let n = (n1, . . . , nN ) be samples sizes, n =

∑
i ni

overall Bern obs.
Two data types: 1) ungrouped data has n = (1, . . . , 1) and large-sample asymptotics = N → ∞; 2)

grouped data has ni > 1 with (usually) categorical variables, same values in a group, and small-dispersion
asymptotics = ni →∞ with N constant.

Same estimates β̂ and SE for grouped/ungrouped, but deviance changes (different saturated model).

5.1 Link Functions

Latent Variable Model Threshold model with ungrouped data: 1) ∃ unobserved continuous y∗i s.t.
y∗i =

∑
j βjxij + εi; 2) εi has mean 0, CDF F ; 3) threshold τ s.t. yi = 0 if y∗i ≤ τ and yi = 1 if

y∗i > τ . Then:

P (yi = 1) = P (y∗i > τ) = P

∑
j

βjxij + εi > τ


= 1− P

εi ≤ τ −∑
j

βjxij


= 1− F

τ −∑
j

βjxij


since data doesn’t indicate what τ is, can take τ = 0 WLOG, and can use standard F (since
multiply all parameters by constant). Generally F is symmetric about 0, so F (z) = 1 − F (−z)
and:

P (yi = 1) = F

(∑
b

βjxij

)
⇒ F−1[P (yi = 1)] =

p∑
j=1

βjxij

so the link function corresponds to inverse CDF for some latent distribution.

Link Functions/Models Possible link functions are:

1. Probit: F = Φ so Φ−1[P (yi = 1)] =
∑
j βjxij

2. Logit: F (z) = ez

1+ez is logistic distribution, so F−1 = logit and logit[P (yi = 1)] =
∑
j βjxij

3. Log-Log: F (z) = exp[− exp(−(x− a)/b)] (Type I extreme-value distribution) so that:

− log[− logP (yi = 1)] =
∑
j βjxij

5.2 Logistic Regression: Interpretation

πi =
exp(

∑
j βjxij)

1 + exp(
∑
j βjxij)

logit(πi) =
∑
j

βjxij

Interpreting β Interpretations depending on quantitative/qualitative:

• Quantitative x: ∂πi
∂xij

= βj
exp(

∑
j βjxij)

1+exp(
∑
j βjxij)

= βjπj(1− πj) so that at steepest, πi = 1/2:

∂πi
∂xij

=
βj
4

22



• Qualitative x: Let x be binary indicator, logit(πi) = β0 +β1x (2×2 contingency table). Then
logit[P (y = 1|x = 1)]− logit[P (y = 1|x = 0)] = β1 so that eβ1 is odds ratio:

eβ1 =
P (y = 1|x = 1)/[1− P (y = 1|x = 1)]

P (y = 1|x = 0)/[1− P (y = 1|x = 0)]

If there are multiple variables, odds of P (y = 1) multiply by eβj for unit increase in xj :

eβj =
P (y = 1|xj = u+ 1)/[1− P (y = 1|xj = u+ 1)]

P (y = 1|xj = u)/[1− P (y = 1|xj = u)]

Case-Control Studies Retrospective studies fine for logistic regression since:

eβ =
P (y = 1|x = 1)/P (y = 0|x = 1)

P (y = 1|x = 0)/P (y = 0|x = 0)
=
P (x = 1|y = 1)/P (x = 0|y = 1)

P (x = 1|y = 0)/P (x = 0|x = 0)

i.e. we can reverse response/explanatory and still get odds ratio interpretation.

Predictive Power Two main ways to summarize predictive power:

1. Classification table: cross-classify y with prediction ŷ; i.e. use ŷi = 1 if π̂i > π0 and ŷi = 0
otherwise (i.e. pi0 = 0.5, π0 = ȳ). Then:

sensitivity = P (ŷ = 1|y = 1) and specificity = P (ŷ = 0|y = 0)

but depends strongly on cutoff π0.

2. ROC curve: Let tpr = sensitivity and fpr = 1− specificity.

ROC curve = plot tpr (y) as function of fpr (x); generally concave

If pi0 ≈ 1 then tpr = fpr = 0; If π0 ≈ 0 then tpr = fpr = 1.

Concordance index = area under ROC curve = proportion of all pairs (i, j) such that yi =
1, yj = 0 and π̂i > π̂j .

3. Correlation measure: corr(y, µ̂) is useless because y is 0 or 1. Better measure is corr(y∗, µ̂),
i.e. y∗ = µ+ ε and µ̂ =

∑
j βjxij .

5.3 Logistic Regression: Inference

Use likelihood equations and Newton-Raphson/Fisher Scoring, like other GLMs:

N∑
i=1

(yi − µ̂i)xij
var(yi)

∂µi
∂ηi

=

N∑
i=1

ni(yi − πi)xij
πi(1− πi)

f(ηi) = 0

since µi = F (ηi) for CDF F resulting in PDF f . In terms of β:

N∑
i=1

ni(yi − F (
∑
j βjxij))xijf(

∑
j βjxij)

F (
∑
j βjxij)[1− F (

∑
j βjxij)]

= 0

Likelihood Equations For logistic regression: F (z) = ez

1+ez , f(z) = ez

(1+ez)2 = F (z)[1− F (z)] so:

N∑
i=1

ni(yi − πi)xij = 0

and if X is the N × p model matrix, with totals si = niyi, then:

XT s = XTE(s)

i.e. as with all canonical link: sufficient statistic = expected value.

Asymptotic Covariance Matrix of Estimators J = XTWX, and wi = (∂µi/∂ηi)
2

var(yi)
= niπi(1 − πi)

so the estimated covariance matrix for large samples is:

v̂ar(β̂) = (XTŴX)−1 = (XTdiag[niπ̂i(1− π̂i)]X)−1

Wald is Suboptimal 1) Scale-dependent; 2) Aberrant behavior when effect is large.

For null model logit(π) = β0, and H0 : β0 = 0, then on totals scale, z2 = logit(y)2[ny(1− y)] while

on proportion scale, z2 = (y−0.5)2

y(1−y)/n which are different.
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Fisher Exact Test Used when n is small relative to p; eliminate nuisance parameters by conditioning on
their sufficient statistics. Consider logistic regression with single binary x and small N , ungrouped:
logit[P (yi = 1)] = β0 + β1xi. Interested in β1; β0 is nuisance.

Kernel of log-likelihood is:
∑
i yiθi =

∑
i yi(β0 +β1xi) = β0

∑
i yi+β1

∑
i xiyi so

∑
i yi is sufficient

for β0, and
∑
i xiyi for β1. To eliminate β0, consider

∑
i xiyi = s1 while conditioning on

∑
i yi =

s0 + s1 where s0 is binomial success totals when x = 0 (n0)and s1 is total for x = 1 (n1).

Consider H0 : β1 = 0⇔ π0 = π1. Let π = eβ0

1+eβ0
under H0 and consider:

P (s1 = t, s0 = u) =

(
n0

t

)
πt(1− π)n0−t

(
n1

u

)
πu(1− π)n1−u

P (s0 + s1 = v) =

(
n0 + n1

v

)
πv(1− π)n0+n1−v

⇒ P (s1 = t|s0 + s1 = v) =

(
n1

t

)(
n0

v−t
)(

n0+n1

v

)
which is independent of β0. To test H0 : β1 = 0 vs. Ha : β1 > 0, we use: P (s1 ≥ t|s1 + s0) where t
is observed s1 value.

Limited: we need sufficient statistics for nuisance parameters; only exist for canonical link GLMs.

5.4 Logistic Regression: Fitting

Iterative Fitting Since logit is canonical, Newton-Raphson = Fisher scoring. We can express deriva-
tives as:

u
(t)
j =

∑
i

(si − niπ(t)
i )xij ⇒ u(t) = XT (s− µ(t))

(H)
(t)
jk = −

∑
i

xijxikniπ
(t)
i (1− π(t)

i )⇒ H(t) = −XTdiag[niπ
(t)
i (1− π(t)

i )]X

where π
(t)
i =

exp(
∑
j β

(t)
j xij)

1+exp(
∑
j β

(t)
j xij)

, µ
(t)
i = niπ

(t)
i so that the update is:

β(t+1) = β(t) +
(
XTdiag[niπ

(t)
i (1− π(t)

i )]X
)−1

XT (s− π(t))

Infinite Estimates Fitting runs into problems when complete separation or quasi-complete separation
occurs. Quick example: y = 1 at x = 1, 2, 3 and y = 0 and x = 4, 5, 6; then β̂0 = −3.5β̂1 and
β̂1 =∞.

Signs: 1) very large standard errors (since log-likelihood is near-flat); 2) perfect prediction (π̂i = 1
if yi = 1 and vice versa); 3) maximized log-likelihood is basically 0.

Quasi-complete separation when cases exist with both outcomes on hyperplane; still infinite esti-
mate, but log-likelihood < 0. (Often happens when yi = 1 or 0 for every obs with certain value of
categorical variable)

We can still do: 1) LRT of β1 = 0 vs. β̂1 =∞ comparing log-likelihoods at these values; 2) invert
test to get confidence interval, i.e. (L,∞) where H0 : β1 = L has p-value α.

5.5 Deviance and Model Comparison/Checking

1) LRT to check more complex model is better (if not, current model is probably fine); 2) Global
goodness-of-fit tests (Pearson chi-squared or deviance)

Deviance For grouped data, saturated model has π̃i = yi (sample proportion), so LRT statistic com-
paring model to saturated is:

−2

[∑
i

(niyi log(π̂i) + (ni − niyi) log(1− π̂i))−
∑
i

(niyi log(yi) + (ni − niyi) log(1− yi))

]
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G2 = D(y; µ̂) = 2
∑
i

niyi log
niyi
niπ̂i

+ 2
∑
i

(ni − niyi) log
ni − niyi
ni − niπ̂i

= 2
∑
i

obs× log

(
obs

fitted

)
∼ χ2

N−p

Pearson Statistic X2 =
∑

2Ncells
(obs−fitted)2

fitted =
∑
i

(niyi−niπ̂i)2
niπ̂i

+
∑
i

[(ni−niyi)−(ni−niπ̂i)]2
ni−niπ̂i

⇒ X2 =

N∑
i=1

(yi − π̂i)2

π̂i(1− π̂i)/ni
∼ χ2

N−p

Again, X2 is a quadratic approximation of G2, and |X2 − G2| p−→ 0 under H0. But X2 converges
to χ2

N−p faster than G2, so provides more reliable estimates when small success/failures.

Also, chi-squared under H0 only for grouped data!! Even for grouped data, if N is big with ni
small, then not really chi-squared.

However, even if ungrouped, we can still use G2(M0|M1) = D(M0) − D(M1) ∼ χ2
p1−p0 under

H0 : M0 holds.

Residuals Use Deviance/Pearson statistic (global goodness-of-fit) or LRT/deviance comparison (model
comparison) to select a model; then use residuals to determine microscopic fits.

1. Pearson residual: ei = yi−π̂i√
π̂i(1−π̂i)/ni

so that X2 =
∑
i e

2
i

2. Deviance residual: di =

√
2
[
niyi log

(
niyi
niπ̂i

)
+ (ni − niyi) log

(
ni−niyi
ni−niπ̂i

)]
× sign(ei)

so that D(y; µ̂) =
∑
i d

2
i

3. Standardized residual: ri = yi−π̂i√
π̂i(1−π̂i)(1−ĥii)/ni

∼ N (0, 1) if model holds

where ĥii = (ĤW )ii for ĤW = Ŵ1/2X(XTŴX)−1XTŴ1/2 and Ŵ = niπ̂i(1− π̂i)

5.6 Probit and Log-Log Models

Probit Models Φ−1(πi) =
∑
j βjxij and πi = Φ

(∑
j βjxij

)
• Interpreting parameters: ∂πi

∂xij
= βjφ(

∑
j βjxij) so at max, 0, rate of increase is 0.4 · βj

(compare to 0.25 · βj for logistic)

• Logistic comparison: ML parameter estimates in logistic are 1.8 times estimates in probit
(because standard deviation of logistic is pi/

√
3 times probit)

• Predictive power: Use ROC curve and corr(y∗, µ̂) as in logistic

• Fitting: Use likelihood equations with Φ, φ and iterative (Newton-Raphson 6= Fisher scoring)

• Asymptotics: v̂ar(β̂) = (XTŴX)−1 where ŵi = niφ(ηi)
2

Φ(ηi)[1−Φ(ηi)]

Log-Log/Complementary Log-Log Models Both probit and logistic are symmetric response distri-
butions (logit(πi) = −logit(1− πi)). Log-log/complementary log-log useful when response for πi is
not symmetric.

1. Log-Log Model πi = exp[− exp(
∑
j βjxij)] or − log[− log(πi)] =

∑
j βjxij

Approaches 0 sharply; approaches 1 slowly

2. Complementary Log-Log Model

πi = 1− exp[− exp(
∑
j βjxij)] or log[− log(1− πi)] =

∑
j βjxij

Approaches 0 slowly; approaches 1 sharply
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6 Multinomial Models

Binomial = two categories. Multinomial = c categories. Can be either nominal (no natural category
ordering) or ordinal (categories ordered).

πij = P (yi = j) = P (yij = 1) s.t.
∑c
j=1 πij = 1; yi = (yi1, . . . , yic) s.t.

∑
j yij = 1. Finally,

p(yi1, . . . , yic) = πyi1i1 · · ·π
yic
ic

6.1 Nominal Response: Baseline-Category Logit

Baseline-Category Logits Need to consider all categories exchangeably, so: 1) pick a baseline cate-
gory, i.e. c; 2) form logits of every other category w.r.t c (i.e. conditional probability of being in
category j given in category j or c). Basically treat each j, c pair as binary model.

Baseline logits: log πi1
πic
, . . . , log

πi,c−1

πic
where the jth category logit is:

log
πij
πic

= log

[
P (yij = 1|yij = 1 or yic = 1)

1− P (yij = 1|yij = 1 or yic = 1)

]
= logit [P (yij = 1|yij = 1 or yic = 1)]

letting xi = (xi1, . . . , xip) be explanatory variable values for subject i and βj = (βj1, . . . , βjp) be
parameters for jth baseline logit (i.e. exp. var. by subject, parameters by logit equation):

log
πij
πic

= xiβj =

p∑
k=1

βjkxik

simultaneously describes effects of xi on all c−1 baseline logits; effects vary according to j category.
Also, determines effects on all other logits, since:

log
πj
πk

= log
πj
πc
− log

πk
πc

= xi(βj − βk)

Nominal: if all outcome category labels are permuted, and parameters permuted according, then
model still holds!

Multivariate GLM Generalizing GLM to multivariate response: g(µi) = Xiβ where g is multivari-
ate; Xi is model matrix (generally xi repeated |g| times, but can differ for each gi). yi is from
multivariate EDF:

f(yi; θi, φ) = exp

[
yTi θi − b(θi)

a(φ)
+ c(yi, φ)

]
Multinomial ∈ Multivariate EDF: yi = (yi1, . . . , yi,c−1) since yic = 1 − (yi1 + · · · + yi,c−1) so
redundant; µi = (µi1, . . . , µi,c−1) and we can express baseline logit model as:

gj(µi) = log

[
µij

1− (µi1 + · · ·+ µi,c−1)

]
,Xiβ =


xi 0 · · · 0
0 xi · · · 0
...

...
. . .

...
0 0 · · · xi




β1

β2

...
βc−1


where each βj = (βj1, . . . , βjp)

Multinomial likelihood is:
∑c−1
j=1 yij log πij +

(
1−

∑c−1
j=1 yij

)
log πic =

∑c−1
j=1 log

πij
πic

+ log πic

so θj = log
πij
πic

: baseline logit is the natural parameter and canonical link!

Fitting Important formulas:

πij =
exp(xiβj)

1 +
∑c−1
k=1 exp(xiβk)

πic =
1

1 +
∑c−1
k=1 exp(xiβk)

with βc = 0 for identifiability (also exp(0) = 1, as needed).

26



The likelihood equations are:

l(β; y) = log

 N∏
i=1

 c∏
j=1

π
yij
ij

 =

N∑
i=1

c−1∑
j=1

yij(xiβj)− log

1 +

c−1∑
j=1

exp(xiβj)


=

c−1∑
j=1

[
p∑
k=1

βjk

(
N∑
i=1

xikyij

)]
−

N∑
i=1

log

1 +

c−1∑
j=1

exp(xiβj)


so sufficient statistics are

∑
i xikyij . Taking derivatives:

∂l(β; y)

∂βjk
=

N∑
i=1

xikyij −
N∑
i=1

[
xik exp(xiβj)

1 +
∑c−1
l=1 exp(xiβl)

]
=

N∑
i=1

xik(yij − πij) = 0

⇒
N∑
i=1

xikyij =

N∑
i=1

xikπij

so sufficient statistic = expected value, as in all canonical link.

Differentiating the log-likelihood again, we have:

∂2l(β; y)

∂βjk∂βjk′
= −

N∑
i=1

xikxik′πij(1− πij),
∂2l(β; y)

∂βjk∂βj′k′
=

N∑
i=1

xikxik′πijπij′

⇒ (J )j,j′ = −∂
2l(β; y)

∂βj∂β′j
=

N∑
i=1

piij [I(j = j′)− πij′ ]xTi xi

where each are blocks of size p× p, and there are (c− 1)2 of them. We also have: β̂ ∼ N (β,J−1)

Deviance and Inference After fitting, need to do: 1) significance tests for parameters; 2) confidence
intervals; 3) model comparisons. We can use LRT, Wald, or score for significance tests: i.e.
H0 = β1k = β2k = · · · = βc−1,k = 0 can be done using LRT with maximized likelihood with/without
variable xk; has χ2

c−1 distribution.

Deviance/Pearson Statistic: For grouped data, let yij = proportion of observations in setting
i in category j, then multinomial likelihood is:

∏
i

∏
j π

niyij
ij and deviance compares log-likelihood

at model fit π̂ij and at saturated π̃ij = yij resulting in:

G2 = 2

N∑
i=1

c∑
j=1

niyij log
niyij
niπ̂ij

= 2
∑

obs× log
obs

fitted
∼ χ2

(N−p)(c−1)

X2 =

N∑
i=1

c∑
j=1

(niyij − niπ̂ij)2

niπ̂ij
=
∑ (obs− fitted)2

fitted
∼ χ2

(N−p)(c−1)

where df = N(c−1)−p(c−1) = (N −p)(c−1) because that’s number of multinomial probabilities
modeled minus number of parameters (βc = 0). (i.e. N = number of combinations of explanatory
variable values.)

6.2 Ordinal Response: Cumulative Logit

If categories are ordered, use cumulative logits; generally fewer parameters, so model parsimony!

Cumulative Logit Models Now let yi = j represent subject i falling into category j; equivalent to
yij = 1. Consider cumulative probabilities P (yi ≤ j) = πi1 + · · ·+ πij .

Cumulative logits: logit[P (yi ≤ j)] = log
πi1+···+πij

πi,j+1+···+πic

Cumulative logit model: Consider being in categories 1, . . . , j as “success”, categories j+1, . . . , c
as “failure”. Then:

logit[P (yi ≤ j)] = αj + xiβ
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where each cumulative logit has different intercept but same slope; αj increasing in j (i.e. same
shape logit curves, do not cross). Ordinal because if arbitrary permutation of labels, then model
need not hold!

Proportional odds structure: Note that:

log
P (yi ≤ j|xi = u)/P (yi > j|xi = u)

P (yi ≤ j|xi = v)/P (yi > j|xi = v)
= logit[P (yi ≤ j|xi = u)]−logit[P (yi ≤ j|xi = v)] = (u−v)β

so cumulative odds ratio (odds ratio of cumulative probabilities at different values of xi) is propor-
tional to e(u−v)β . Every unit increase in xik results in odds of yi ≤ j multiplying by eβk .

Latent Variable Motivation Motivate common effect β: suppose linear y∗i s.t. y∗i = xiβ + εi and
εi ∼ G(·), i.e. µi = xiβ and y∗i ∼ G(y∗i − µi). Cutpoints −∞ = α0 < α1 < · · · < αc = ∞ so that
yi = j iff αj−1 < y∗i ≤ αj . Then: P (yi ≤ j) = P (y∗i ≤ αj) = G(αj − xiβ), so the link function is
G−1 and G−1[P (yi ≤ j)] = αj − xiβ. (Note: − instead of + here: if βk > 0 and as xik increases,
each P (yi ≤ j) decreases, so less probability of being at low end of scale, so yi tends to be larger
at higher values of xik.) Same effects β regardless of selection of cutpoints!

Cumulative Link Models G−1[P (yi ≤ j)] = αj + xiβ. Effects are same for each cumulative proba-
bility; G is CDF of error term.

Cumulative probit if G = Φ for standard normal; again effects π/
√

3 times bigger in logit model.
1-unit increase in xik corresponds to βk increase in E(y∗i ).

Predictive Power Use corr(y∗, ŷ∗), that is:

R2 ≈ corr(y∗, ŷ∗)2 =
var(ŷ∗)

v̂ar(y∗)
=

var(ŷ∗)

var(ŷ∗) + var(ε)

where var(ε) = 1 for probit, π/
√

3 for logit.

Fitting Consider again multicategory indicator yi = (yi1, . . . , yic) and cumulative link modelG−1[P (yi ≤
j)] = αj + xiβ. The likelihood is:

N∏
i=1

c∏
j=1

π
yij
ij =

N∏
i=1

c∏
j=1

[P (yi ≤ j)− P (yi ≤ j − 1)]yij

⇒ l(α, β) =

N∑
i=1

c∑
j=1

yij log[G(αj + xiβ)−G(αj−1 + xiβ)]

Then the likelihood equations are (with g being PDF of G):

∂l

∂βk
=

N∑
i=1

c∑
j=1

yijxik
g(αj + xiβ)− g(αj−1 + xiβ)

G(αj + xiβ)−G(αj−1 + xiβ)
= 0

∂l

∂αk
=

N∑
i=1

∑
j = 1cyij

δjkg(αj + xiβ)− δj−1,kg(αj−1 + xiβ)

G(αj + xiβ)−G(αj−1 + xiβ)
= 0

Model Checking Cumulative logit/proportional odds assumes: 1) location varies (i.e. αj differs by
j); 2) constant variability (β constant). This results in stochastic ordering : P (yi ≤ j|xi = u) ≤
P (yi ≤ j|xi = v) or P (yi ≤ j|xi = u) ≥ P (yi ≤ j|xi = v) for all j! (If this is violated, cumulative
logits might not fit well.)

Score test: Can check if separate effects βj fit better than common β by using score test H0 : β1 =
· · · = βc = β (since score test only uses log-likelihood at H0, i.e. common effects, so no problems
with fitting with βj .)

Using OLS for Ordinal Problems: 1) No clear-cut choice for category to numerical score; 2) Ordinal
outcome is consistent with [αj−1, αj ] interval of response; OLS doesn’t consider this error; 3) OLS
does not yield estimated prob. for each category given xi; 4) Non-constant variability due to
floor/ceiling effects violates OLS; 5) Floor/ceiling effects can yield spurious interactions effects.
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7 Count Models

7.1 Poisson Loglinear Model

Poisson Distribution Properties include:

• PMF: p(y;µ) = µye−µ

y!

• Moments: E(yi) = µ, var(yi) = µ, and skew(yi) = 1/
√
µ, with mode(yi) = bµc

We have two ways of fitting count data assuming yi ∼ Pois(µi).

1. Variance Stabilization + OLS: Since Poisson has non-constant variance, we can transform
yi so transformed values have constant variance. By delta method, var[g(y)] ≈ [g′(µ)]2var(y)

so using g(y) =
√
y: var(

√
y) ≈

(
1

2
√
µ

)2

µ = 1
4 !

So fit E(
√

y) = Xβ using OLS. But: 1) effects hard to interpret; 2) other transforms might
fit linear predictor better (i.e. log(yi) or yi itself).

2. Poisson Loglinear GLM: Using logµi =
∑
j βjxij , model is:

logµi =

p∑
j=1

βjxij or logµ = Xβ

The likelihood equations become:
∑
i xij(yi − µi) = 0

Exponential relation: µi = (eβ1)xi1 · · · (eβp)xip , i.e. 1-unit increase in xij multiples µi by eβj

Model Fitting As usual, Newton-Raphson = Fisher Scoring for canonical log link; and asymptoti-
cally/estimated covariance of β̂ is: v̂ar(β̂) = (XTŴX)−1 with wi = µi.

Model Checking/Comparison Again, we use global goodness-of-fits: Deviance or Pearson

Deviance: D(y; µ̂) = 2
∑
i

[
yi log

(
yi
µ̂

)
− yi + µ̂i

]
but if there is intercept term, then by likelihood

equations,
∑
i yi =

∑
i µ̂i, so:

G2 = D(y; µ̂) = 2

n∑
i=1

[
yi log

(
yi
µ̂i

)]

Pearson Statistic: X2 =

n∑
i=1

(yi − µ̂i)2

µ̂i

Both statistics are χ2
n−p when n is fixed and µi grows unboundedly (i.e. contingency tables with

fixed cells and sample size within each cell growing).

But neither reveals how the model fails. Better to compare (i.e. LRT/Deviance comparison) with
more complex model, i.e. Poisson ⊂ Negative binomial.

Residuals For Poisson GLM:

• Pearson residual: ei = yi−µ̂i√
µ̂i

• Deviance residual: components of deviance di as usual

• Standardized residual: ri = yi−µ̂i√
µ̂i(1−ĥii)

Also: compare observed counts to fitted counts; generally too low for 0 and high outcomes
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Example: One-Way Layout Suppose yij is count variable in one-way layout of obs j in group i,
i = 1, . . . , c and j = 1, . . . , ni, n =

∑
i ni. Let yij ∼ Pois(µij); model common means in groups,

log(µij) = βi (β0 = 0 for identifiability). Then log µ = Xβ with:

µ =


µ11n1

µ21n2

...
µc1nc

 , Xβ =


1n1

0n1
· · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0nc 0nc · · · 1nc



β1

β2

...
βc


Likelihood equations for βi are:

∑ni
j=1(yij − µ̂i) = 0 so that µ̂i = ȳi ⇒ β̂i = log ȳi.

Since ŵii = µ̂i = ȳi, we have: v̂ar(β̂) = (XTŴX)−1 = diag
(

1
niȳi

)
so β̂i are uncorrelated and since

µh
µi

= exp(βh−βi), var(βh−βi) = var(βh) + var(βi) and the 100(1−α)% CI for the ratio of means:

µh
µi
∈ exp

[
(β̂h − β̂i)± zα/2

√
1

nhȳh
+

1

niȳi

]
H0 : µ1 = · · · = µc by using Deviance comparison/LRT, which equals: 2

∑c
i=1 niȳi log

(
ȳi
ȳ

)
≈ χ2

c−1

Global GOF tests: G2 = 2
∑c
i=1

∑ni
j=1 yij log

(
yij
ȳi

)
and X2 =

∑c
i=1

∑ni
j=1

(yij−ȳi)2
ȳi

∼ χ2∑
i(n1−1)

7.2 Contingency Tables: Poisson = Multinomial

Independent Poisson counts in cells = multinomial models once conditioned on total sample size. Explore
independence/association/interaction structure by specifying models with interaction terms (vs. not).

Poisson = Multinomial Independent Poisson (y1, . . . , yc), means (µ1, . . . , µc); total n =
∑
j yj ∼

Pois(
∑
j µj). Then conditional probability of (y1, . . . , yc) given n is:

P

y1 = n1, . . . , yc = nc|
c∑
j=1

yj = n

 =
P (y1 = n1, . . . , yc = nc)

P (
∑
j yj = n)

=

(
n!

n1! · · ·nc!

) c∏
j=1

π
nj
j

where πj =
µj∑
i µi

; i.e. multinomial with n, pij .

Example: Two-Way Contingency Table Two categorical variables, A and B, r × c table; yij with
A = i, B = j. Model: µij = µφiψj s.t.

∑
i φi =

∑
j ψj = 1. Then, log model is additive:

logµij = β0 + βAi + βBj (main effects, no interaction; identifiability requires first-category baseline)

Multinomial: Conditional on
∑
i

∑
j yij = n, we have

∑
i

∑
j µij = µ, so πij = µij/µ = φiψj , and

since
∑
i φi = 1,

∑
j ψj = 1, we must have φi = πi+ and ψj = π+j . Thus: {πij = πi+π+j} and so

category responses in A vs. B are independent! (i.e. P (A = i, B = j) = P (A = i)P (B = j))

Poisson: Consider 2× 2 table, βA1 = βB1 = 0 for identifiability, then:

logµ =


logµ11

logµ12

logµ21

logµ22

 = Xβ =


1 0 0
1 0 1
1 1 0
1 1 1


β0

βA2
βB2


Deriving the likelihood equations, with logµij = β0 + βAi + βBj , we have log-likelihood kernel:

l(µ) =

r∑
i=1

c∑
j=1

yij log(µij)−
r∑
i=1

c∑
j=1

µij = nβ0 +

r∑
i=1

yi+β
A
i +

c∑
j=1

y+jβ
B
j −

r∑
i=1

c∑
j=1

exp(β0 +βAi +βBj )

∂l

∂βAi
= yi+ −

c∑
j=1

exp(β0 + βAi + βBj ) = yi+ − µi+ ,
∂l

∂βBj
= y+j − µ+j

So ML fitted values are:
{
µ̂ij =

yi+y+j

n

}
(equivalent to multinomial: π̂i+ = yi+/n, π̂+j = y+j/n)

Parameters: Multinomial has (r − 1) + (c− 1), while Poisson has 1 + (r − 1) + (c− 1).

Pearson Statistic: X2 =
∑r
i=1

∑c
j=1

(yij−µ̂ij)2
µ̂ij

∼ χ2
(r−1)(c−1) (since (rc− 1)− (r − 1)− (c− 1))
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Example: Adding Interaction Term Suppose logµij = β0 + βAi + βBj + γABij , interaction term γABij ;

model matrix has cross-products of r − 1 row indicators and c− 1 column indicators. (i.e. γAB1j =

γABi1 = 0, so for first column/row, we just have β0 + βAi or β0 + βBj ; yields 1 + (r − 1) + (c− 1) +
(r − 1)(c− 1) = rc, so model is now saturated)

Interpretation: odds ratios. For r = c = 2, the log odds ratio is:

log
π11/π21

π12/π22
= log

µ11µ22

µ12µ21
= γAB11 + γAB22 − γAB12 − γAB21 = γAB22

so eγ
AB
22 is odds ratio between being in A = 1 vsA = 2 given in B = 1 over B = 2.

General Interactions for Multiway Tables Consider three-way table, A,B,C, with r × c × l cells;
independent cell counts {yijk} or multinomial cell prob. {πijk} with

∑
i

∑
j

∑
k πijk = 1.

1. Mutual independence: P (A = i, B = j, C = k) = P (A = i)P (B = j)P (C = k) , that is

πijk = πi++π+j+π++k or log µijk = β0 + βAi + βBj + βCk (independence = additive)

2. Joint independence: P (A = i, B = j, C = k) = P (A = i)P (B = j, C = k) : A is jointly

independent of B,C. That is, πijk = πi++π+jk or log µijk = β0 + βAi + βBj + βCk + γBCjk

3. Conditional independence: P (A = i, B = j|C = k) = P (A = i|C = k)P (B = j|C = k) then

A,B are conditionally independent given C (i.e. consider separate two-way tables between
A,B for each value of C; then in each two-way table, A,B are independent.)

Then πijk =
πi+kπ+jk

π++k
and log µijk = β0 + βAi + βBj + βCk + γACik + γBCjk

4. Homogenous association: All pairs can be conditionally dependent:

logµijk = β0 + βAi + βBj + βCk + γABij + γACik + γBCjk

Similar interpretation as interaction term in two-way model: consider fixed C = k, then
conditional association between A,B is specified by odds ratios: θij(k) =

µijkµrck
µickµrjk

i.e. to

baseline categories r, c. Then the log odds for r = c = 2 are: log θ11(k) = log µ11kµ22k

µ12kµ21k
=

γAB11 +γAB22 −γAB12 −γAB21 = γAB22 so that θij(1) = · · · = θij(l) for every i, j (without three-factor
term) ⇒ homogeneous association.

Fitting in Contingency Tables Generally likelihood equations equate observed counts = fitted values
for the highest-order terms, i.e.:

1) Mutual independence: yi++ = µ̂i++, y+j+ = µ̂+j+, y++k = µ̂++k

2) Homogenous association: yij+ = µ̂ij+, yi+k = µ̂i+k, y+jk = µ̂+jk

Loglinear ↔ Logistic Models Loglinear = symmetric category classifications, model joint distribu-
tion of categorical variables; Logistic = distinguish response vs. explanatory classifications.

Consider homogeneous association model, with A as response, B,C as explanatory; i.e. condition
on n+jk for each combination of B,C values, so c× l logits. Let r = 2, then:

log
P (A = 1|B = j, C = k)

P (A = 2|B = j, C = k)
= log

µ1jk

µ2jk
= logµ1jk−logµ2jk = (βA1 −βA2 )+(γAB1j −γAB2j )+(γAC1k −γAC2k )

⇒ logit[P (A = 1|B = j, C = k)] = λ+ δBj + δCk

Same thing can be done if r > 2 using baseline-logits for A in terms of B,C, . . . So note that the
log-odds ratio at, say, different values of B are:

log
P (A = 1|B = u,C = k)/P (A = 2|B = u,C = k)

P (A = 1|B = v, C = k)/P (A = 2|B = v, C − k)
= δBu − δBv

so the interaction terms are exactly the log-odds ratios, as in loglinear case.
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7.3 Negative Binomial GLMs

Overdispersion: Poisson has variance = mean; but count data often has variance > mean, often due
to heterogeneity (mixture of Poisson; not all explanatory variables in model)

Negative Binomial = Gamma Mixture of Poisson

y|λ ∼ Pois(λ)

λ ∼ Gamma(µ, k)

Then E(λ) = µ, var(λ) = µ2

k , so that E(y) = E[E(y|λ)] = µ and var(y) = E[var(y|λ)] +

var[E(y|λ)] = E(λ) + var(λ) = µ+ µ2

k > µ.

Marginal y over Gamma mixture yields Negative Binomial:

• PDF: p(y;µ, k) = Γ(y+k)
Γ(k)Γ(y+1)

(
µ
µ+k

)y (
k

µ+k

)k
• Natural parameter: θi = log µi

µi+k
for fixed k

• Dispersion parameter: γ = 1/k (NBin → Pois as γ → 0)

• Moments: E(y) = µ, var(y) = µ+ γµ2

Negative Binomial GLMs Use log link rather than canonical (natural parameter above); treat γ as
constant for all i but unknown.

• Link: log µi

• Log-likelihood:

l(β, γ; y) =

n∑
i=1

[log Γ(yi + 1/γ)− log Γ(1/γ)− log Γ(yi + 1)]+

n∑
i=1

[
yi log

(
γµi

1 + γµi

)
−
(

1

γ

)
log(1 + γµi)

]

• Likelihood equations:
∑n
i=1

(yi−µi)xij
µi+γµ2

i

(
∂µi
∂ηi

)
= 0

• Hessian: ∂2l
∂βj∂γ

= −
∑
i

(yi−µi)xij
(1+γµi)2

(
∂µi
∂ηi

)
so E

[
∂2l

∂βj∂γ

]
= 0 and β, γ are orthogonal, and β̂, γ̂ are asymptotically independent.

• Fitting: ŵi = µ̂i
1+γµ̂i

and v̂ar(β̂) = (XTŴX)−1 with log link.

• Deviance: D(y; µ̂) = 2
∑
i

[
yi log

(
yi
µ̂i

)
−
(
yi + 1

γ̂

)
log
(

1+γ̂yi
1+γ̂µ̂i

)]
Model Comparison: Poisson vs. NBin Use LRT with H0 : γ = 0 (or informally AIC values). But

since γ = 0 is on boundary, the LRT statistic is 1/2 point mass at 0 and 1/2 chi-squared, df = 1,
so the p-value is 1/2 what we obtain by treating LRT statistic as χ2

1.

7.4 Zero-Inflated GLMs

Often counts of 0 are much larger than expected for Poisson; i.e. random vs. structural zero ⇒ zero-
inflation. Less problematic for negative binomial, but still can be problem if two modes (i.e. mode at 0,
mode > 0).

Zero-Inflated Poisson (ZIP) Mixture model of: 1) point mass at 0; 2) count distribution (Poisson):

yi ∼
{

0 with probability 1− φi
Pois(λi) with probability φi

• Unconditional PMF:

P (yi = 0) = (1− φi) + φie
−λi , P (yi = j) = φi

λjie
−λi

j!

• Model: logit(φi) = x1iβ1 and log(λi) = x21β2
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• Latent variable: zi = 0⇒ yi = 0, zi = 1⇒ yi ∼ Pois(λi); P (zi = 0) = 1− φi, P (zi = 1) = φi

• Moments: E(yi) = E[E(yi|zi)] = (1− φi) · 0 + φiλi = φiλi

var(yi) = E[var(yi|zi)]+var[E(yi|zi)] = [(1−φi)·0+φiλi]+[(1−φi)(0−φiλi)2+φi(λi−φiλi)2] =
φiλi[1 + (1− φi)λi] > E(yi) (overdispersion)

• Log-likelihood:

l(β1, β2) =
∑
yi=0

log[1+ex1iβ1e−exp(x2iβ2)]−
n∑
i=1

log(1+ex1iβ1)+
∑
yi>0

[x1iβ1+yix2iβ2−ex2iβ2−log(yi!)]

• Simpler parametrization: ZIP model has many parameters β1, β2 compared to Poisson. In-
stead, consider: x1i = x2i and β2 = τβ1

Interpretability also ruined because parameters do not directly effect E(yi) = φiλi; one solu-
tion is to do null model for φi (so E(yi) proportional to λi)

Zero-Inflated Negative Binomial (ZINB) Same as Poisson, except negative binomial on count part;
useful when still overdispersion after applying ZIP model

Hurdle Model “Hurdle” crossing 0; P (yi > 0) = πi, P (yi = 0) = 1− πi; truncated model for yi|yi > 0

• PMF: P (yi = 0) = 1− πi, P (yi = j) = πi
f(j;µi)

1−f(0;µi)

• Model: logit(πi) = x1iβ1 and log(µi) = x2iβ2

• Log-likelihood: l(β1, β2) = l1(β1) + l2(β2) with:

l1(β1) =
∑
yi=0

log(1− πi) +
∑
yi>0

log(πi) =
∑
yi>0

x1iβ1 −
n∑
i=1

log(1 + ex1iβ)

l2(β2) =
∑
yi>0

[
log f

(
yi; e

x2iβ2
)
− log[1− f

(
0; ex2iβ2

)
]
]
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8 Quasi-Likelihood

QL is motivated by two points:

1. Overdispersion: i.e. for Poisson, restriction of variance = mean made the fit very poor for many
data sets.

2. Mean-variance relation: Likelihood equations only depend on distribution of yi through µi and
v(µi).

So instead of specifying distribution for yi, just pick mean-variance relation v(µi), which seems
appropriate for given data; along with: 1) link function; 2) linear predictor.

8.1 Variance Inflation for Poisson/Binomial GLMs

To motivate QL methods, we use QL to deal with variance inflation in Poisson/Binomial models.

QL Approach to Variance Inflation Suppose standard model (i.e. Poisson/Binomial) assumes v∗(µi),
but actual variance may be different, i.e.:

var(yi) = v(µi) = φv∗(µi)

for constant φ (φ > 1 is overdispersion case.)

• Substitute v(µi) into likelihood equations; φ drops since equal to zero:
∑
i

(yi−µi)xij
v(µi)

(
∂µi
∂ηi

)
=

0 ⇒
∑
i

(yi−µi)xij
v∗(µi)

(
∂µi
∂ηi

)
= 0 so identical to likelihood equations for GLM with variance

v∗(µi).

• Fits/estimates identical; wi = (∂µi/∂ηi)
2

var(yi)
= (∂µi/∂ηi)

2

φv∗(µi)
so asymptotic var(β̂) = (XTWX)−1 =

φ(XTW∗W)−1 for the QL-adjusted model. (i.e. SEQL =
√
φ× SEstandard )

• Pearson statistic: X2 =
∑
i

(yi−µ̂i)2
v∗(µ̂i)

for standard model.

If variance inflation, then X2 doesn’t fit well; for QL model, want X2/φ ≈ χ2
n−p so E(X2/φ) ≈

n− p⇒ E[X2/(n− p)] ≈ φ and:

φ̂ =
X2

n− p
=

1

n− p

n∑
i=1

(yi − µ̂i)2

µ̂i

So steps to fitting QL approach are:

1. Fit standard GLM with variance v∗(µi), and use p ML estimates β̂

2. Multiply standard SE estimates by

√
φ̂ =

√
X2/(n− p)

Overdispersed Poisson v(µi) = φµi, with identical parameter estimates, and Pearson statistic: X2 =∑
i

(yi−µ̂i)2
µ̂i

so φ̂ = X2/(n− p) for variance-inflation estimate

Overdispersed Binomial Let niyi ∼ Bin(ni, πi); overdispersion due to: 1) heterogeneity due to un-
observed variables; 2) positive correlation between Bern trials (alternative: use Beta-Binomial)

Variance function: v(µi) = φπi(1− πi)/ni

Pearson statistic/estimate: φ̂ = X2

n−p = 1
n−p

∑
i

(yi−π̂i)2
π̂i(1−π̂i)/ni

Note: Does not work for ungrouped data, because necessarily var(yi) = πi(1− πi) structurally
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8.2 Beta-Binomial Models

Handling Binomial overdispersion (without structural problems as in variance-inflation) due to: 1) cor-
related trials; 2) unobserved heterogeneity

1) Correlated Bernoulli Trials Let yi1, . . . , yini be ni Bernoulli trials for yi =
∑ni
j=1

yij
ni

. If trials not
independent, i.e. corr(yij , yik) = ρ: var(yij) = πi(1− πi), Cov(yij , yik) = ρπi(1− πi), so:

var(yi) =
1

n2
i

var(

ni∑
j=1

yij) =
1

n2
i

 ni∑
j=1

var(yij) + 2
∑
j<k

Cov(yij , yik)

 =
1

n2
i

[niπi(1−πi)+ni(ni−1)ρπi(1−πi)]

⇒ var(yi) = [1 + ρ(ni − 1)]
πi(1− πi)

ni

so overdispersion when ρ > 0 (also works when ni = 1 since just binomial variance)

Using QL with v(πi) = [1 + ρ(ni − 1)]πi(1−πi)ni
, the estimates differ from ML estimates (since

1 + ρ(ni − 1) term doesn’t drop out of likelihood equations). Iterative method:

1. Solve quasi-likelihood equations for β̂ given ρ̂:
∑
i

(yi−π̂i)xij
[1+ρ̂(ni−1)]π̂i(1−π̂i)/ni = 0

2. Use updated β̂ to solve: X2 =
∑
i

(yi−π̂i)2
[1+ρ̂(ni−1)]π̂i(1−π̂i)/ni = n− p (Pearson to expected value)

2) Heterogeneity: Mixture Model (Beta-Binomial) Mixture model over π for s = ny:

s|π ∼ Bin(n, π)

π ∼ Beta(α1, α2)

Properties of the Beta distribution:

• PDF: f(π;α1, α2) = Γ(α1+α2)
Γ(α1)Γ(α2)π

α1−1(1− π)α2−1 for α1, α2 > 0

• Shapes: uniform (α1 = α2 = 1); unimodal symmetric (α1 = α2 > 1); unimodal skewed left
(α1 > α2 > 1) or right (α2 > α1 > 1); U-shaped (α1, α2 < 1)

• Re-parametrization: µ = α1

α1+α2
and θ = 1

α1+α2

• Moments: E(π) = µ and var(π) = µ(1− µ) θ
1+θ

• Beta-Binomial: Marginal of s = ny:

p(s;n, µ, θ) =

(
n

s

)[∏s−1
k=0(µ+ kθ)

] [∏n−s−1
k=0 (1− µ+ kθ)

]
∏n−1
k=0(1 + kθ)

• Marginal moments: E(y) = µ and var(y) =
[
1 + (n− 1) θ

1+θ

]
µ(1−µ)

n

• Correlation: ρ = θ
1+θ is exactly the correlation between Bernoulli trials

• Model: assume θ identical for all observations; say niyi ∼ Beta-Bin(ni, µi, θ) then use logit
link: logit(µi) = xiβ (can use Newton-Raphson, but Beta-Bin not in EDF!)

• If not actually Beta-Binomial, estimates β̂ are not robust or consistent.

8.3 Model Misspecification and Robust Estimation

Unlike Beta-Binomial mixture model, QL methods are robust to model misspecification!

Estimating Equations The quasi-score / estimating equations are:

u(β) =

n∑
i=1

(
∂µi
∂β

)T
yi − µi
v(µi)

= 0

i.e. using the fact that ∂µi
∂βj

= ∂µi
∂ηi

xij .

Quasi-score function uj(β) is an unbiased estimating function because E[uj(β)] = 0. For

unbiased estimating function, the estimating equations yield estimator β̂.
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Quasi-Likelihood Properties QL treats quasi-score u(β) as derivative of quasi-log-likelihood func-
tion, which yields nice properties like ML:

• If µi, v(µi) are correct, then QL estimators β̂ are asymptotically efficient for estimators locally
linear in yi

• β̂ are asymptotically normal with V ≈
[∑n

i=1

(
∂µi
∂β

)T
[v(µi)]

−1
(
∂µi
∂β

)]−1

• Key result: β̂ are consistent for β even if v(µi) is misspecified! (as long as link function +
linear predictor are correct)

Robust Covariance Estimation: Sandwich Matrix Generally, var(yi) 6= v(µi); then the asymp-

totic V is incorrect. To find var(β), use Taylor expansion of u(β): u(β̂) ≈ u(β) + ∂u(β)
∂β (β̂−β) and

since u(β̂) = 0 by definition, (β̂−β) ≈ −
(
∂u(β)
∂β

)−1

u(β) so that var(β̂) ≈
(
∂u(β)
∂β

)−1

var[u(β)]
(
∂u(β)
∂β

)−1

.

But
(
∂u(β)
∂β

)
is Hessian of quasi-log-likelihood, so symmetric and −

(
∂u(β)
∂β

)−1

= V is inverse

information matrix for specified model; and

var[u(β)] = var

[∑n
i=1

(
∂µi(β)
∂β

)T
yi−µi
v(µi)

]
=
∑n
i=1

(
∂µi(β)
∂β

)T
var(yi)
[v(µi)]2

(
∂µi(β)
∂β

)
and so:

var(β̂) ≈ V

[
n∑
i=1

(
∂µi(β)

∂β

)T
var(yi)

[v(µi)]2

(
∂µi(β)

∂β

)]
V

which simplifies to V if var(yi) = v(µi). But generally we don’t know var(yi), so we estimate:
µi → µ̂i and var(yi)→ (yi − µ̂i)2 and obtain the sandwich estimator:

var(β̂) ≈ V̂

[
n∑
i=1

(
∂µ̂i(β)

∂β

)T
(yi − µ̂i)2

[v(µ̂i)]2

(
∂µ̂i(β)

∂β

)]
V̂

Sandwich estimator is robust: whether or not v(µi) is correct, n times estimator converges in

probability to asymptotic covariance matrix of
√
n(β̂ − β)!

Example: Poisson Misspecification: Suppose model yi ∼ Pois(µi), but actually var(yi) = µ2
i ;

consider null model µi = β ⇒ ∂µi
∂β = 1, so: u(β) =

∑n
i=1

(
∂µi
∂β

)
[v(µi)]

−1(yi − µi) =
∑n
i=1

yi−µi
µi

=∑n
i=1

yi−β
β = 0 so β̂ = ȳ and model-based variance is: V =

[∑n
i=1

(
∂µi
∂β

)
[v(µi)]

−1
(
∂µi
∂β

)]−1

= β
n

so that V̂ = ȳ
n .

The true variance of β̂ using var(yi) = µ2
i is: β2

n = ȳ2

n which is different when ȳ > 1. The robust

sandwich estimator (since we don’t know var(yi)) is, using µi = β = ȳ,
∑
i

(yi−ȳ)2

n2
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9 Correlated Data

Possible cases: 1) Survey asks for opinions on related questions/topics, so answers will be correlated;
2) Clinical trial observes same subjects over time, and measurements from each time point are correlated.

Notation: yi = (yi1, . . . , yid), i.e. each subject i has cluster of d obs (i.e. one subject observed over d
time points); xij is row vector of p explanatory variables for yij ; µij = E(yij).

Two types of models: 1) marginal model (model each marginal yij and use correlation structure for
SE); 2) generalized linear mixed model (model entire cluster, using random effect for each cluster)

Two types of effects: 1) between-subject (between-cluster); 2) within-subject (within-cluster).

Example: 2×2 Design. Suppose treatments A,B given at times 1, 2 (d = 2); treatment = between-
subjects, time = within-subjects. (yAi1, y

A
i2) and (yBi1, y

B
i2) are for subject i in A or B. Let corr(yXi1 , y

X
i2) = ρ

and corr(yAit , y
B
ju) = 0, var(yAit) = var(yBit ) = σ2. Let ȳAt = 1

n

∑n
i=1 y

A
it and ȳBt = 1

n

∑n
i=1 y

B
it . Then

between-subjects effect is b =
ȳA1 +ȳA2

2 − ȳB1 +ȳB2
2 and within-subjects effect is w =

ȳA1 +ȳB1
2 − ȳA2 +ȳB2

2 . Then

we have var(b) = σ2(1+ρ)
n and var(w) = σ2(1−ρ)

n , but if we assume independence than they are both σ2

n ,
so standard errors are too small for var(b) and too large for var(w).

9.1 Marginal Models and GLMMs

Marginal Model g(µij) = xijβ for all i = 1, . . . , n and j = 1, . . . , d (for between-cluster effects)

i.e. models marginal distribution of each yij , so GLM structure for each yij .

Example: yij is score on test j for student i, with GPA xi, so then β = (β01, β11, . . . , β0d, β1d)
and xij = (0, 0, . . . , 1, xi, . . . , 0, 0)

GLMM g[E(yij |ui)] = xijβ + zijui for i = 1, . . . , n and j = 1, . . . , d (for within-cluster effects)

β are fixed effects (constant) and ui are random effects (has probability distribution)

Generally ui ∼ N (0,Σu) i.i.d.; common ui for all j, which leads to correlation; given conditional
of (yi1, . . . , yid)|ui, distribution is specified for y.

Intuition: β must apply to all subjects identically if they have the same values of the explanatory
variables x; but random effects apply to each individual differently while preserving model parsi-
mony (if we wanted to include ui as fixed effect, we’d have to have a separate parameter for each
person, so p ∝ n, while now we only have Σu added); ui variability reflects that different subjects
with identical xi may be heterogeneous due to unobserved variables.

Example: Random-Intercepts Model. Let zijui = ui, i.e. add a random intercept. If yij is
score on exam j and xi = GPA, then: E(yij |ui) = β0j +β1jxi +ui = (β0j +ui) +β1jxi which adds
separate intercept β0j + ui for each subject!

Example: Matched-Pairs, Binary-Normal Model. Let (yi1, yi2) be matched pair of observations
for subject i, with success = 1. Compare P (yi1 = 1) and P (yi2 = 1).

• Marginal model: logit[P (yij = 1)] = β0 + β1xj for x1 = 0, x2 = 1; average over all
observations and use Binomial; i.e. consider success/failure totals n11 (success/success), n12

(success/failure), n21 (failure/success), n22 (failure/failure). β1 is the log odds ratio comparing
success in observation 2 vs. observation 1 (over entire population) so population-averaged
effect

• GLMM: logit[P (yij = 1|ui)] = β0 + β1xj + ui; uses individual contingency table; β1 is log
odds ratio at the individual level so subject-specific effect (ui basically centers regression
at mean of each subject, so β1 can be steeper to take care of each individual effect)

The population-averaged = subject-specific effect if identity link, but not for any other links. For

example above, β̂marginal1 = log n+1/n+2

n1+/n2+
while β̂GLMM

1 = log n21

n12
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GLMM → Marginal To find the between-cluster effects for GLMM (for which it’s not natural), we
have to integrate out ui using LIE; i.e. E(yi) = E[E(yi|ui)] = E[g−1(xijβ+ zijui)]; leads to exact
same marginal model if identity link; different form otherwise

9.2 Normal Linear Mixed Model

Start with simplest, normal linear mixed model: E(yij |ui) = xijβ + zijui i.e. yij = xijβ + zijui + εij
where β is p× 1 vector of fixed effects, ui ∼ N (0,Σu) is q × 1 vector of random effects, εij ∼ N (0, σ2

e).
Generally, yi = Xiβ + Ziui + εi (Xi is d× p model matrix, Z is d× q model matrix for random effects,
εi ∼ N (0, σ2

eI)). E(yi|ui) = Xiβ + Ziui and var(yi) = ZiΣuZTi + σ2
eI.

Random-Intercepts Model: ui = ui, Zi = 1 and var(ui) = σ2
u. Then var(yi) = σ2

u11T + σ2
eI so

that corr(yij , yik) =
σ2
u

σ2
u+σ2

e
for j 6= k (exchangeable/compound symmetry)

9.3 GLMM Fitting and Inference

No closed-form likelihood, so model fitting is difficult.

Marginal Likelihood/Maximum Likelihood GLMM is two-stage: 1) conditional on ui, fit a GLM
with known effect zijui; 2) ui ∼ N (0,Σu) so fit parameters.

Marginal likelihood is: To fit likelihood for β,Σu, integrate out random effects:

 L(β,Σu; y) = f(y;β,Σu) =

∫
f(y|u;β)f(u; Σu)du

Example: Logistic-Normal Random-Intercepts Model.

L(β, σ2
u; y) =

n∏
i=1

∫ ∞
−∞

d∏
j=1

(
exp(xijβ + ui)

1 + exp(xijβ + ui)

)yij ( 1

1 + exp(xijβ + ui)

)1−yij
f(ui;σ

2
u)dui


Need to approximate this numerically and then maximize: 1) Gauss-Hermite quadrature; 2) Monte-
Carlo; 3) Laplace approximation; 4) EM algorithm

GLMM Inference Inference for fixed effects is standard (i.e. LRT for nested models); but for random
effects is more complex (because if variance = 0, then on boundary, so likelihood-based inference
doesn’t work); i.e. H0 : σ2

u = 0 vs. Ha : σ2
u > 0 has the mixed distribution of 1

2δ0 + 1
2χ

2
1 so the

p-value is 1
2P (χ2

1 > tobs)

9.4 Marginal Model Fitting and Inference

ML fitting generally only possible for multivariate normal response; if not, we need to use multivariate
QL, i.e. GEE.

Multivariate Normal Regression yi = (yi1, . . . , yid) and yij = xijβ + εij with εi ∼ N (0,Vi) so
that y ∼ N (Xβ,V) where X is stacked Xi of dimension dn × p then we have GLS estimator

β̂ = (XTV−1X)−1XTV−1y

Generalized Estimating Equations (GEE) Lack of discrete distributions that can show correlation
structures; use QL-like method, where we specify: 1) µij = E(yij); 2) v(µij); 3) working corre-
lation structure corr(yij), yik). Simple correlation structures:

• Exchangeable: corr(yij , yik) = α

• Autoregressive: corr(yij , yik) = α|j−k|

• Independent: corr(yij , yik) = 0

• Unstructured: corr(yij , yik) = αjk

When link function + linear predictor are correct, GEE estimator β̂ are still consistent for β even
if correlation is incorrect. But standard errors are wrong, so we need to use robust sandwich
estimator.
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Marginal model: g(µij) = xijβ; Vi is working covariance matrix for yi based on working correlation

matrix R(α); if R(α) is true correlation, then Vi = var(yi). Let Di = ∂µi
∂β be d × p matrix of jk

elements
∂µij
∂βk

. Recall: univariate QL estimating equations were:
∑
i

(
∂µi
∂β

)T
[v(µi)]

−1(yi−µi) = 0,

so the multivariate analog is generalized estimating equations:

n∑
i=1

DT
i V−1

i (yi − µi) = 0

GEE estimator β̂ is solution to GEE equations. Iterated method: 1) estimate β given current esti-
mate of α; 2) estimate α given current estimate of β using moment estimation (pairwise empirical

correlation). Then: (β̂ − β)
d−→ N (0,VG/n) where:

var(β̂) ≈ VG

n
≈

[
n∑
i=1

DT
i V−1

i Di

]−1 [ n∑
i=1

DT
i V−1

i [var(yi)]V
−1
i Di

][
n∑
i=1

DT
i V−1

i Di

]−1

Estimated sandwich matrix V̂G/n for β̂ replaces β → β̂, φ → φ̂, α → α̂, and var(yi) →
(yi − µ̂i)(yi − µ̂i)T

Disadvantages of GEE approach:

1. No likelihood: can’t do likelihood methods (i.e. LRT, deviance) for fit, model comparison,
inference

2. Categorical data: “correlation” not really natural for discrete data

3. Stronger missing data assumption: compared to ML, strong missing data; GEE must have
MCAR, but ML only requires MAR
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Important Formulae

E[yTAy] = trace(AV) + µTAµ

∂(aTβ)

∂β
= a

∂(βTAβ)

∂β
= (A + AT )β

Likelihood results: for log-likelihood l:

E

(
∂l

∂θ

)
= 0

−E
(
∂2l

∂θ2

)
= E

(
∂l

∂θ

)2

−E
(

∂2li
∂βj∂βk

)
= E

[(
∂li
∂βj

)(
∂li
∂βk

)]
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