
Algebra I: Groups and Rings

Lectures Notes (Math 122)

Won I. Lee

These are a set of notes loosely based on the Math 122 course at Harvard, taught by Prof. Benedict
Gross, and on M. Artin’s text.1 It also contains additional material based on chapters 7, 8, and 9 of
Artin’s text (on bilinear forms, linear groups, and group representations).

1 Group Theory

1.1 Linear Algebra Redux

n× n Matrices. Let us define the space of all n×n matrices over the reals as Mn(R); this forms a real
vector space of dimension n2. We have the operations:

• Addition: A+B = (aij + bij)

• Scalar multiplication: αA = (αaij)

• Matrix multiplication: A ·B = (cij) = (
∑n
k=1 aikbkj)

We consider the last operation as composition of linear transformations after considering square
matrices as representations of linear operators on a vector space, T : Rn → Rn. Note: Matrix
multiplication is not commutative for n ≥ 2.

Other properties and laws of interest include:

• Identity: there exists I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 such that AI = IA = A.

• Distributivity: A(B + C) = AB +AC

• Associativity: A(BC) = (AB)C = ABC

• Invertibility: A is invertible iff there exists B ∈Mn(R) such that AB = BA = I

• Determinant: There exists a unique mapping det : Mn(R)→ R such that it has the following
properties: 1) det(I) = 1; 2) det is linear in the rows of the matrix; 3) If two adjacent rows of
A are equal, then det(A) = 0.

The major theorem of invertibility is that:

A is invertible⇔ det(A) 6= 0

General Linear Group, GLn(R). We consider all invertible matrices in Mn(R) to form the general
linear group, GLn(R), that is:

GLn(R) = {A : det(A) 6= 0} = {A : ∃A−1, AA−1 = I}

We note the following lemma:

Lemma 1.1 If A−1 exists for matrix A, then it is unique.

1M. Artin. Algebra. Prentice-Hall, 1991.

1



Proof Suppose there exists B,C such that AB = BA = AC = CA = I. Then we must have:
B = B(AC) = (BA)C = C.

It is reasonable to ask what we gain and lose by imposing invertibility on the set of all n × n
matrices:

• Lose: GLn(R) is no longer closed under addition or scalar multiplication!

(i.e. A+ (−A) = 0 ·A = 0)

• Gain: Closed under matrix multiplication.

(follows from multiplicative property of determinants)

To close this description, we note the following properties of GLn(R) that we will precisely abstract
to form the general definition of a group:

1. Product is associative: (AB)C = A(BC)

2. Identity exists: I

3. Every element A has an inverse A−1

1.2 Groups + Subgroups

Definition (Group). A group G is a set with a product operation · : G×G→ G such that:

1. Associative

2. Identity exists (e or 1 ∈ G)

3. Inverses exist (g−1 ∈ G for every g ∈ G)

The product is in general not commutative; if it is, we call G a commutative or Abelian group.

Examples (Groups). 1) The integers Z = {0,±1,±2,±3, . . . } form an Abelian group under +.

2) G = V for a vector space V forms an Abelian group under + (ignoring scalar multiplication).

3) For any set T , we can construct the group:

G = {All bijections g : T → T} = Sym(T )

is the symmetric group of T , where the product operation is the composition of mappings.

• e is the identity map

• g−1 is the inverse map, which exists since all g are bijections

• Composition of maps is associative by definition

If T is a finite set, T ' {1, 2, . . . , n}, then we say Sym(T ) = Sn is the symmetric group on n letters,
and is a finite group of order n! (i.e. number of elements). It is non-Abelian for n ≥ 3.

Finally, note that:
GLn(R) ⊂ Sym(Rn)

that is, the general linear group is a subset of the symmetric group on Rn, since GLn(R) is the set
of all bijections Rn → Rn that preserve linear structure. In fact, GLn(R) is a subgroup!

Definition (Subgroup). A subgroup H ⊂ G is a subset such that H is:

1. Closed under ·
2. Contains e (identity)

3. Closed under inverses (g ∈ H ⇒ g−1 ∈ H)

Permutation Group. We now focus on the symmetric group on n letters, Sn, also called the per-
mutation group. As we noted earlier, it is finite group of order n!, and the simplest examples
are:

1. S1 = {e} is the simplest possible group, since any group G must contain the identity.
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2. S2 = {e, τ}: there is only one possible choice for τ on 2 letters, 1, 2, since it must be bijective
and not equal to the identity; that is, τ = (12).

Then, the multiplication table follows: ee = e, eτ = τe = τ, ττ = e. The group is Abelian.

3. S3 = {e, τ, τ ′, τ ′′, σ, σ′}: we have 3! = 6 elements, with τ being the transpositions (exchanging
two letters, keeping one fixed), and σ being the cyclic permutations (keeping no element fixed).

We note in particular that τσ 6= στ , and therefore S3 is not Abelian.

Corollary 1.2 Sn is non-Abelian for any n ≥ 3.

Proof We can consider S3 as a subgroup of Sn fixing all letters {4, 5, . . . , n}, and so τ, σ can
be appropriately extended to Sn by doing the exact operations on {1, 2, 3} and fixing the rest
of the letters. Thus, τσ 6= στ holds in every Sn.

As shown in the proof above, any Sk for k ≤ n is a subgroup of Sn.

Examples (Subgroups). 1) The general linear group: GLn(R) = {Linear bijections of Rn} ⊂ Sym(Rn)

• Composition of linear maps is linear, so closed under composition

• The identity map I is linear

• If a map is linear, so is the inverse

2) There is a further subgroup of GL2(R) on the plane that stabilizes the line y = 0:

H =

{
A =

(
a b
0 d

)
: ad 6= 0

}
⊂ GL2(R)

which follows since the first column represents Te1, and so the mapping of basis vector e1 under
these matrices still lies on the line y = 0.

3) Subgroups of (Z,+) are particularly simple:

Proposition 1.3 Subgroups of (Z,+) are exactly (bZ,+) for some fixed b ∈ Z.

Proof First, we show that all sets of the form bZ are subgroups. They are closed since bm+ bn =
b(m+ n) ∈ bZ; identity is simply 0 = b · 0; and inverses are −bm = b(−m) ∈ bZ.

Next, we show that bZ exhaust the possible subgroups. Suppose H ⊂ Z is a subgroup. If H = {0},
then H = 0Z so we are done. If H 6= {0}, then there exists some m 6= 0, and so −m ∈ H as well.
One of them is positive, so we consider m > 0. Let b > 0 be the smallest positive integer in H;
then bZ ⊂ H, since H must be closed. Now suppose h ∈ H, then h = mb+ r for 0 ≤ r < b by the
Euclidean algorithm. However, if r 6= 0, then r = h−mb ∈ H is positive yet smaller than b, which
contradicts the fact that b is the smallest positive integer in H. Thus, r = 0 and H = bZ.

4) For any element g ∈ G, we can generate the cyclic subgroup, or smallest subgroup, generated
by that element:

Definition For any group G, the cyclic subgroup generated by g for some g ∈ G is the smallest
subgroup containing g, that is:

〈g〉 = {e, g, g−1, g2, g−2, . . . } = {gm : m ∈ Z}

Note, however, that not all powers may be distinct. For example, in S3, the element τ was such
that τ2 = e, and so 〈τ〉 = {e, τ}.
If m is the smallest power such that gm = e, then we say that m is the order of g ∈ G. If gn 6= e
for every n, then we say that g has infinite order.

An example of an infinite order element is

(
1 1
0 1

)
∈ GL2(R):

〈(
1 1
0 1

)〉
=

{(
1 1
0 1

)n
=

(
1 n
0 1

)
: n ∈ Z+

}
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1.3 Homomorphisms + Isomorphisms

Motivating Example. Consider the following groups:

1. G1 = {±1,±i} = {ik : k = 0, 1, 2, 3} ⊂ C×

2. G2 = {e, ρ, ρ2, ρ3} ⊂ S4 where ρ = (1234) is the cyclic permutation through the 4 letters.

We note that we can simply relabel ρ → i and the multiplication and operations would work out
exactly; for example, ρ4 = i4 = 1, or the identity in the group. This motivates the idea of an
isomorphism, which essentially tells us two groups are the “same” up to relabeling.

Definition (Isomorphism). An isomorphism is a mapping f : G1 → G2 between groups such that:

1. f is bijective

2. f(x · y) = f(x) · f(y)

As an example, in G1, G2 in the motivating example above, f(ρk) = ik would be an isomorphism
between the two groups.

Proposition 1.4 Every cyclic group of order n is isomorphic to each other.

Proof Let G1, G2 be two cyclic groups of order n, i.e. G1 = 〈x1〉 and G2 = 〈x2〉. Then let f : G1 →
G2 be defined by f(xk1) = xk2 . It is clearly bijective, since there exists an inverse f−1(xk2) = xk1 ,
and preserves the multiplicative structure: f(xm1 x

n
1 ) = f(xm+n

1 ) = xm+n
2 = xm2 x

n
2 = f(xm1 )f(xn1 ).

We also note that there exists a cyclic group of order n for every n ∈ Z+, since we can simply take
the cyclic subgroup generated by the cyclic permutation σn = (123 · · ·n) ∈ Sn.

Examples (Isomorphisms). 1) One particularly interesting example of isomorphic groups is:

(R,+) ' (R+,×)

where the mapping is given by f : R→ R+ such that f(x) = ex. Then:

f(x+ y) = ex+y = exey = f(x)f(y)

2) Klein 4-group. We have two representations of the Klein 4-group:

G1 = {e, τ1, τ2, τ1τ2}

where τ1 = (12)(34), τ2 = (13)(24), and τ1τ2 = (14)(23);

G2 =

{(
1 0
0 1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 −1

)}
then the isomorphism maps:

f : e 7→
(

1 0
0 1

)
, τ1 7→

(
−1 0
0 1

)
, . . .

Note: This group is not isomorphic to the earlier group of order 4, namely G3 = {±1,±i}. This is
because G3 has an element of order 4, i, whereas no element in G1, G2 has order 4.

Testing for Isomorphisms. To quickly rule out cases in which groups G1, G2 are not isomorphic, we
can check that:

1. |G1| = |G2|
2. G1 Abelian ⇔ G2 Abelian

3. G1, G2 have same number of elements of every order

If any of these properties do not hold, G1, G2 are not isomorphic.
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Definition (Automorphism). An automorphism is an isomorphism from a group to itself.

Note that this is more restrictive than Sym(G), since if, say, f(x) = x′, f(y) = y′ and x · y = z,
then we must have f(z) = z′ where x′ ·y′ = z′ in G. Thus, the possible permutations are restricted
by the multiplication table.

The primary need for this definition is to construct the automorphism group of G, namely:

Aut(G) = {Isomorphisms G→ G} = {“Symmetries” of G}

which can be verified as a group (mainly inverses exist).

Definition (Homomorphism). A homomorphism is a map f : G1 → G2 such that f(x·y) = f(x)·f(y).

This is a natural generalization of the idea of an isomorphism, removing the necessity of being a
bijection. There exist many groups, some in the examples to follow, that are not isomorphic yet
share a multiplicative structure in some way (the determinant mapping from GLn(R) to R×). It
turns out that the idea of a homomorphism is much more fundamental to further group and ring
theory than is isomorphism.

Examples (Homomorphisms). 1) det : GLn(R)→ R× = (R \ {0},×)

We have det(AB) = det(A) det(B), but the groups are not isomorphic since R× is Abelian while
GLn(R) is not. Moreover, two different matrices can in fact have the same determinant.

2) f : S3 → Sn which permutes the letters {1, 2, 3} and keeps {4, 5, . . . , n} fixed.

3) f : Z→ S2 or the sign mapping, where:

f(even) = e, f(odd) = τ

Note that e · e = e, just as even × even = even, and similarly τ · τ = e, just as odd × odd = even.

Properties of Homomorphisms. If f, h are homomorphisms, the following properties hold:

• f(e) = e′

• f(g−1) = f(g)−1

• f ◦ h is also a homomorphism

1.4 Kernels, Images, and Normal Subgroups

Definition (Kernel + Image). Let f be a homomorphism from G to G′. Then the image of f is:

im(f) = {g′ : f(g) = g′ for some g ∈ G} ⊂ G′

and the kernel of f is:
ker(f) = {g : f(g) = e′} ⊂ G

One observation we make is that the kernel happens to be closed under conjugation. That is, if
h ∈ ker(f), then ghg−1 ∈ ker(f), since f(ghg−1) = f(g)f(h)f(g−1) = f(g)e′f(g)−1 = e′. This
motivates the idea of a normal subgroup.

Definition (Normal Subgroup). For a group G, a subgroup H is normal in G, denoted H CG if:

∀g ∈ G, gHg−1 = H

Examples (Normal Subgroups). 1) As noted above, the kernel of any homomorphism is normal.

2) All Abelian groups are normal (since ghg−1 = gg−1h = h ∈ H)

3) As a non-example, G = S3 has a non-normal subgroup. This is because we can consider τ = (12)
and τ ′ = (23); then conjugating τ by τ ′ yields τ ′′. However, this implies that H = {e, τ} is not
normal.
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Examples (Kernels + Images). 1) det : GLn(R) → R×. We know that det is a homomorphism.
Then:

im(det) = R×

ker(det) = {A : det(A) = 1} = SLn(R)

where SLn(R) is the special linear group, and arises as the kernel of the determinant homomor-
phism. This subgroup is normal, since:

det(BAB−1) = det(B) det(A) det(B−1) = det(B) det(B)−1 = 1

so that we have SLn(R)CGLn(R).

2) f : Sn → GLn(R), where the mapping associates a permutation with its matrix, f(σ) = Aσ.
For example, in S3 with the cyclic permutation σ = (123), we have:

f(σ) = Aσ =

0 0 1
1 0 0
0 1 0


Note that composition of permutations is exactly mapped to matrix multiplication of permutation
matrices, which is almost tautological when matrices are considered as representations of linear
maps. Thus, f is a homomorphism, and we can consider the image and kernel:

im(f) = {Permutation matrices in GLn(R)}

ker(f) = {e}

since the kernel of f consists of permutations mapping to I ∈ GLn(R).

3) Sign homomorphism. Composition of (1) and (2), i.e. sign = det ◦f : Sn → R×. Recall that
composition of homomorphisms is itself a homomorphism. Moreover, we have: det(f(σ)) = ±1 for
every σ ∈ Sn, since f(σ) is a permutation matrix. Thus:

im(sign) = {±1} ∈ R×

ker(sign) = {σ : sign(σ) = det(f(σ)) = 1} = {Even permutations} = An

where An is the alternating group on n letters, and arises as the kernel of the sign homomorphism.
Thus, An C Sn is a normal subgroup, and |An| = n!

2 .

Definition (Center). For a group G, the center of G is defined as the commutative elements:

Z(G) = {z ∈ G : ∀g ∈ G, zg = gz}

Examples (Centers). 1) G = Z(G) ⇔ G is Abelian.

2) G = Sn ⇒ Z(G) = {e} for n ≥ 3.

3) G = GLn(R)⇒ Z(G) = {λI : λ ∈ R×}

Conjugation + Inner Automorphisms. Consider attempting to construct a homomorphism from G
to the automorphism group of G; we want a homomorphism f : G→ Aut(G). The first suggestion
to come to mind may be left translation by g, that is, f(g)(h) = g · h. However, this element f(g)
is not in fact a homomorphism:

f(g)(hh′) = ghh′ 6= (gh)(gh′) = f(g)(h) · f(g)(h′)

The solution is to consider instead conjugation by g, namely:

f(g)(h) = ghg−1 ∈ Aut(G)
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which is in fact a homomorphism because f(g)(hh′) = ghh′g−1 = ghg−1·gh′g−1 = f(g)(h)·f(g)(h′).
The mapping f is bijective since we can exhibit an inverse, namely f(g)−1 = f(g−1). Finally, f is
itself a homomorphism because:

f(gg′)(h) = (gg′)h(gg′)−1 = g(g′h(g′)−1)g−1 = g(f(g′)(h))g−1 = (f(g) ◦ f(g′))(h)

In this case, the kernel turns out to be exactly the center of G:

ker(f) = Z(G)

since f(g) = e⇔ ghg−1 = h⇔ gh = hg ⇔ g ∈ Z(G).

Now it makes sense to ask what the image of f is; that is, which automorphisms of G are hit by
the conjugation operation?

Definition If f : G→ Aut(G) is the conjugation map, then the inner automorphisms of G are:

Inn(G) = im(f) = {a(h) = ghg−1 for some g ∈ G} ⊂ Aut(G)

1.5 Equivalent Relations + Cosets

Definition (Equivalence Relation). For set S, an equivalent relation on S is a relation ∼ that is:

1. Reflexive: a ∼ a
2. Symmetric: a ∼ b⇔ b ∼ a
3. Transitive: a ∼ b, b ∼ c⇒ a ∼ c

More precisely, ∼ defines a subset of the Cartesian product S × S, namely: {(a, b) : a ∼ b}.

Proposition 1.5 Every equivalence relation ∼ defines a partition of the set S, and vice versa.

Proof Given an equivalence relation ∼, consider any element a ∈ S, and define the subset Ca =
{b : a ∼ b} ⊂ S. If Ca = S, we are done. Otherwise, select an element in S \ Ca, and repeat until
∪aCa = S. This is a partition since every element a ∈ S is included in some Ca, and if c ∈ Ca∩Cb,
then a ∼ c, c ∼ b⇒ a ∼ b and Ca = Cb.

Given a partition C1, . . . , Ck of S, let a ∼ b ⇔ a, b ∈ Ci for some i. This defines an equivalence
relation since clearly a ∼ a; a ∼ b⇒ a, b ∈ Ci ⇒ b ∼ a; and a ∼ b, b ∼ c⇒ a, b, c ∈ Ci ⇒ a ∼ c.

Definition The equivalence classes of S for an equivalence relation ∼ are the subsets forming the
partition defined by ∼ and are denoted S̄.

The canonical map S → S̄ is given by a 7→ ā = {x ∈ S : a ∼ x}. The map is surjective but not
injective.

Proposition 1.6 The map f : S → T generates an equivalence relation and partition on S, defined
by a ∼ b⇔ f(a) = f(b) ∈ T .

Note that we can then consider S̄ = im(f) ⊂ T , since different t ∈ im(f) index the equivalence
classes of S. Namely, S̄ is exactly the fibers of f :

S̄ = {f−1(t) : t ∈ T}

Example (Fibers, S̄). Consider the group S = R+, and define the homomorphism f(x) = e2πix, where
T is then the unit circle in C. Then we have:

f−1(1) = Z ⊂ R
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Definition (Coset). Let G be a group and H ⊂ G be a subgroup. Then the left coset of H is given
for a ∈ G:

aH = {ah : h ∈ H}

Now suppose that f : G → G′ is a homomorphism, and H = ker(f) be the kernel. Then H C G,
and we can construct an equivalence relation on G using a ∼ b ⇔ f(a) = f(b). In this case, H is
one of the equivalence classes, namely:

H = ker(f) = f−1(e′)

Proposition 1.7 All equivalence classes for the equivalence relation generated by a homomorphism
f have the form aH, where H = ker(f).

Proof Consider the equivalence class of an arbitrary element a, namely Ca. Then if b ∈ Ca,
f(a) = f(b) ⇒ f(a)−1f(b) = e′ ⇒ f(a−1b) = e′. Thus, a−1b ∈ H, i.e. a−1b = h for
some h ∈ H. But then b = aa−1b = ah ∈ aH, so Ca ⊂ aH. Now suppose b ∈ aH. Then
b = ah⇒ f(b) = f(ah) = f(a)f(h) = f(a), so that b ∈ Ca. Thus, aH ⊂ Ca, so Ca = aH.

Proposition 1.8 For any subgroup H ⊂ G, the mapping h 7→ ah yields a bijection of sets H ' aH.

Proof This map is injective since if ah = ah′ ⇒ h = h′. It is clearly onto, since every element
z ∈ aH is of the form ah for some h ∈ H.

Corollary 1.9 If |H| is finite, then |H| = |aH| for every a ∈ G.

Theorem 1.10 If f : G→ G′ is a homomorphism of groups G,G′, then H = ker(f)CG and the
left cosets aH partition the group G with the same order.

Corollary 1.11 If G is a finite group and f : G→ G′ is a homomorphism with h = ker(f), then:

|G| = |H| · |im(f)|

Proof As noted earlier, the set im(f) indexes the equivalence classes (or fibers) generated by the
homomorphism f ; that is, S̄ ' im(f) so that |S̄| = |im(f)|. Moreover, |G| =

∑
ā∈S̄ |ā|. We know

from Proposition 1.7 and Corollary 1.9 that every equivalence class ā = aH and |aH| = |H|, so we
have: |G| =

∑
ā∈S̄ |ā| = |S̄| · |H| = |H| · |im(f)|.

In particular, we define the index of H as the number of distinct cosets/equivalence classes, denoted
by: [G : H]. Thus, the formula becomes:

|G| = |H| · [G : H]

More generally, we have:

Proposition 1.12 Let H ⊂ G be any subgroup of the group G. Then the left cosets aH partition
G, and are in bijection with H.

Proof Let H ⊂ G be a subgroup. Note that since e ∈ H for every subgroup, a = a · e ∈ aH,
so that every a ∈ G is in some coset aH. Moreover, consider any two cosets aH, bH such that
aH 6= bH. Now suppose there exists some c ∈ aH ∩ bH; then c = ah = bh′ for some h, h′ ∈ H.
But this implies that a−1b = h(h′)−1 ∈ H, so that a−1b = h′′ ∈ H ⇒ b = ah′′ ∈ aH ⇒ bH ⊂ aH.
But we can flip this exactly to get b−1a ∈ H, so aH ⊂ bH and aH = bH. This is a contradiction,
so the cosets are disjoint if they are not equal, and thus form a partition of G. Moreover, by the
same argument as earlier, every coset aH is in bijection with H, by the mapping h 7→ ah, which is
clearly onto and injective since ah = ah′ ⇒ h = h′.
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In particular, the formula |G| = |H| · [G : H] holds for every subgroup H in G.

Lagrange’s Theorem. If |G| is finite and g ∈ G, then the order of g divides |G|.

Proof Let H = 〈g〉 be the cyclic subgroup generated by g ∈ G. Then H = {e, g, . . . , gm−1} for
somem, sinceG is a finite group. Thus, the order of g ism = |H|. Note that since |G| = |H|·[G : H],
in particular |H| divides |G|.

Proposition 1.13 Let G be a finite group with |G| = p for prime p. Then G is cyclic and is
generated by any g 6= e; namely G = 〈g〉. Moreover, the only subgroups of G are {e} and G itself.

Proof Let g ∈ G such that g 6= e. Then the order of g divides p but is not 1, since g 6= e. Thus,
the order of g is p, namely |〈g〉| = p. Since G itself has order p, we must have 〈g〉 = G.

Definition (Simple Group). A group G is simple if the only normal subgroups of G are {e} and G.

Examples (Simple Groups). 1) Any groups of prime order p.

2) An is simple for every n ≥ 5.

3) Any finite, non-Abelian simple group has even order.

1.6 Congruence mod n

We take a brief excursion to discuss congruence modulo n for positive integer n, which generalizes the
concept of evens/odds. In addition, it provides concrete examples of cosets and equivalence relations, as
well as the first major example of a quotient group.

Definition (Congruence mod n). For fixed n ∈ N, congruence mod n is the equivalence relation with:

a ∼ b⇔ n|(a− b)⇔ a− b ∈ nZ

We can show this is an equivalence relation by noting that clearly a ∼ a since n|0; a ∼ b ⇒
n|(a − b) ⇒ n|(b − a) ⇒ b ∼ a; and a ∼ b, b ∼ c ⇒ n|(a − b), n|(b − c) ⇒ n|[(a − b) + (b − c)] ⇒
n|(a− c)⇒ a ∼ c.
For notation, we will say that a ∼ b mod n ⇔ a ≡ b mod n, and state this as a is congruent to b
mod n.

Equivalence Classes mod n. Since a ≡ b mod n is an equivalence relation on Z, there exists a set of
equivalence classes that partition Z. We see that:

ā = {b : a ≡ b mod n} = a+ nZ = {a+ nk : k ∈ Z}

Thus, the equivalence classes are precisely the left cosets of nZ. We denote the set of equivalence
classes as:

Z/nZ = {0, 1, . . . , n− 1}

where we know that this set of n elements exhausts the equivalance classes, since if a ∈ Z, then
a = nq + r for r ∈ 0, 1, . . . , n− 1, and so a = r.

Canonical Homomorphism. There exists a canonical homomorphism mapping Z→ Z/nZ, such that
a 7→ a. This follows from the fact that:

a+ b = a+ b

a · b = a · b

Group of Equivalence Classes. In fact, the equivalence classes Z/nZ form a group under +; that is,
(Z/nZ,+) is an Abelian group.

1. Associative: Since (Z,+) was associative, so is Z/nZ.

2. Identity: 0 is the additive identity on Z/nZ.
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3. Inverses: −a ≡ (a)−1 = n− a ≡ −a is the inverse of a.

Moreover, Z/nZ is a cyclic group of order n!, generated by 1, that is:

Z/nZ = 〈1〉

since we can define k =
∑k
i=1 1.

Group of Units. Note that (Z/nZ, ·) is not itself a group, since 0 has no inverse (that is, no element
k ∈ Z/nZ that yields k ·0 = 1). However, we can construct a subset of Z/nZ that is in fact a group
under ·, called the group of units of Z/nZ and denoted (Z/nZ)×:

(Z/nZ)× = {a ∈ Z/nZ : ∃c ∈ Z/nZ, a · c = 1}

namely, all the elements of Z/nZ that have inverses. We want a more explicit formulation of the
precise elements of Z/nZ that make up the group of units, and we start with the following lemma:

Lemma 1.14 For m,n ∈ Z, mZ + nZ = gcd(m,n)Z.

Proof We can easily check that mZ + nZ is a subgroup of Z by checking the axioms (0 is in
the subgroup; inverses exist; and closure easily follows). Thus, since every subgroup of Z is of
the form kZ, we must have mZ + nZ = kZ for some k ∈ Z. In particular, m ∈ mZ + nZ, so
m = kz ⇒ k|m. Similarly, n ∈ mZ+nZ so k|n. Thus, k ≤ gcd(m,n). Now suppose l|m, l|n. Then
since k ∈ kZ⇒ k = mr + ns⇒ l|k. Thus, k = gcd(m,n).

Proposition 1.15 (Z/nZ)× = {a ∈ Z/nZ : gcd(a, n) = 1}
That is, (Z/nZ)× consists precisely of the elements relatively prime to n.

Proof Suppose a ∈ Z/nZ and gcd(a, n) = 1. Then aZ + nZ = gcd(a, n)Z = Z by Lemma 1.14.
Thus, there exist r, s ∈ Z such that ar + ns = 1⇒ ar − 1 ∈ nZ⇒ ar = 1⇒ a ∈ (Z/nZ)×.

Now suppose a ∈ (Z/nZ)×. Then there exists some c such that ac = 1. Thus, ac − 1 ∈ nZ ⇒
ac− 1 = nb⇒ 1 = ac+ nb′ ∈ aZ + nZ = gcd(a, n)Z. But 1 is only in the cosets kZ for k = ±1, so
gcd(a, n) = 1.

1.7 Quotient Groups

Given our discussion regarding Z/nZ, one natural question may be to ask whether this idea generalizes.
That is, nZ is a subgroup of Z, and we formed a new group of equivalence classes, Z/nZ, by ”quotienting
out” the subgroup nZ, which turned out to be the set of cosets of nZ. We then established a group
structure on Z/nZ using either + or ·, the latter of which required additional restrictions on the allowable
elements.

We know that if H ⊂ G is a subgroup, then the left cosets aH always partition the group G, as
proved earlier. However, when is it possible to construct a group structure on the set of cosets?

First, let us use the notation G/H (later reserved for quotient groups) to denote the set of cosets of
H in G. We attempt to discover when we can transport the group structure of G onto G/H and still
retain a group.

Examples. 1) Suppose f : G → G′ is a homomorphism and H = ker(f) C G. Then the set of cosets
G/H = {aH} ' fibers of map f ' im(f) ⊂ G′. However, im(f) is a subgroup of G′, so that we
can import the structure of G′ onto G/H and yield a group. Namely:

aH · bH = abH

This works since:
a · b = f(a) · f(b) = f(ab) = a · b

and every coset aH ↔ a bijectively. This makes:

F : G→ G/H

10



mapping a 7→ aH a surjective group homomorphism.

2) More generally, suppose that we let H ⊂ G be any subgroup, and G/H be the left cosets of H.
If we again attempt to set aH · bH = abH, we find that this is not well-defined!

This is because the representatives a, b are not unique; namely, there are other elements in the cosets
such that aH = a′H, bH = b′H. Then, we must have abH = a′b′H in order for this multiplication
to be well-defined on G/H. However, this is not true in general. Suppose that H is not normal, so
that aHa−1 6= H. Then:

(aH)(a−1H) = (aa−1)H = eH = H

under the above definition of multiplication on cosets. However, since H is not normal, there exists
h ∈ H such that aha−1 /∈ H. Thus, since we must have ah ∈ aH, a−1 ∈ a−1H, we then find that:

(ah)a−1 = aha−1 /∈ H

and so we cannot possibly have (aH)(a−1H) = H!

3) From example (2), we see that a crucial condition is for the subgroup H to be normal. If HCG,
we can prove that the multiplication law aH · bH = abH actually yields the correct result.

First, note that H CG implies that aHa−1 = H, so that aH = Ha. In other words, ah = h′a for
some h′ ∈ H. To show that the above multiplication defines a group structure on G/H, we first
note that eH = H is the identity element, and (aH)−1 = a−1H is the inverse. Now we must check
that the operation is well-defined under change of representatives.

We want to show that (ah) · (bh′) = (ab)h′′ for some h′′ ∈ H. Now by normality, (ah)(bh′) =
(ha)(bh′) = h(ab)h′ = (ab)hh′ = (ab)h′′ ∈ abH. Thus, the multiplication is well-defined!

Theorem 1.16 Let G be a group and HCG be a normal subgroup. Then the quotient group G/H
is defined by:

G/H = {aH : a ∈ G}

with the group operation:
aH · bH = (ab)H

and yields the canonical homomorphism:

f : G→ G/H

defined by: f(a) = aH with ker(f) = H.

In particular, note that we have proven that every normal subgroup H is the kernel of some
homomorphism! (Namely, the canonical homomorphism mapping G to G/H.)

First Isomorphism Theorem. If f : G → G′ is a surjective group homomorphism with ker(f) = H,
then f induces an isomorphism of groups:

f : G/H → G′

such that f(aH) = f(a).

Proof Note that if aH = a′H, then f(aH) = f(a) = f(a′) = f(a′H) since a′ ∈ aH, so that
a′ = ah and f(a′) = f(a)f(h) = f(a). Thus, f is well-defined. It is also a homomorphism since
f(aH · bH) = f(abH) = f(ab) = f(a)f(b) = f(aH)f(bH). Finally, the map is surjective since f is
surjective, and it is injective since f(aH) = e′ ⇔ aH = eH = H so that ker(f) = {H} is trivial.

Subgroups in G and G/H. Suppose that HCG, so that G/H is a quotient group. Now suppose there
exists some subgroup K such that:

H CK ⊂ G

Note that H is normal in K, since gHg−1 = H for every g ∈ G implies kHk−1 = H for every
k ∈ K ⊂ G. Thus, K/H is also a quotient group, and in fact is a subgroup of G/H. The converse,
that a subgroup of G/H corresponds to a subgroup of G containing H, also holds.
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Proposition 1.17 Let G be a group and H CG. Then there exists a 1-1 correspondence:

{Subgroups K ⊂ G containing H} ↔ {Subgroups of G/H}

Proof Suppose H C K ⊂ G, then K/H ⊂ G/H is a subgroup of G/H. This is because K is a
subgroup, and therefore if aH, bH ∈ K/H, then ab ∈ K and so abH ∈ K/H. Conversely, if {aH}
is a subgroup of G/H, then K = ∪(aH) is a subgroup of G containing H, since if a, b ∈ K, then
aH, bH are cosets in the subgroup, so abH is in the subgroup and ab ∈ K. Moreover, the subgroup
of cosets must include H, so H ∈ ∪(aH) = K.

Corollary 1.18 Let Z be the group of integers under + and p be a prime integer. If pZ ⊂ K ⊂ Z
for subgroup K, then either:

1. K = Z
2. K = pZ

That is, pZ is the maximal subgroup of Z.

Proof Let G = Z and H = pZ. Then the quotient group G/H = Z/pZ is a cyclic group, and
K/pZ is a subgroup of this cyclic group. Since |K/pZ| divides |Z/pZ| = p, either |K/pZ| = 1 or p.
If |K/pZ| = 1, then K = pZ; if |K/pZ| = p, then K = Z. This is because if K/pZ = Z/pZ, then
K = ∪C∈K/pZC = ∪C∈Z/pZC = Z, and similar for K = pZ.
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2 Vector Spaces

2.1 Abstract Vector Spaces

We are familiar with the elementary vector spaces over the reals or complex numbers, for which the
canonical example is Rn. These allow us to abstract the desired properties of vector spaces in axiomatic
form to construct vector spaces over any given field F . We always fix some field F for the remainder.

Definition (Field). A field F is a set with the following properties:

1. Abelian group under +, with identity 0 and inverse −a
2. F \ {0} = F× is Abelian group under ×, with identity 1 and inverse a−1 = 1/a

Note that the rational numbers Q = {a/b : a, b ∈ Z, b 6= 0} forms a field, whereas Z does not.

Definition (Subfield). A subfield F ′ ⊂ F is a subset of F that is closed under +, ×, and inverses.

The canonical example is that Q ⊂ R ⊂ C are subfields of the complex numbers.

Given this observations, it is natural to ask whether there exist fields that are not subfields of
the complex numbers. One is given by the trivial field, i.e. {0, 1}. Note that this is the simplest
possible field, since all fields must contain at least two elements, 0, 1.

Proposition 2.1 If p is a prime number, then Z/pZ with +,× forms a field.

Proof We know that Z/pZ is an Abelian group under +. Thus, we must show that (Z/pZ)× is
an Abelian group under ×, namely that it is closed under inverses. We recall that pZ ⊂ Z is the
maxmial subgroup. Thus, if a 6≡ 0 mod p, then a /∈ pZ, and so pZ + aZ = gcd(a, p)Z = Z. Thus,
1 ∈ Z = pZ + aZ⇒ 1 = pn+ ab⇒ 1 ≡ ab mod p. Thus, b is the inverse of a in Z/pZ.

Lastly, we note that Z/pZ is not a subfield of C, since Z/pZ is a cyclic group generated by 1,
whereas C does not have any elements of order p.

Definition (Vector Space). A vector space V over the field F is the set such that:

1. V is an Abelian group under +

2. There exists a scalar product operation V × F → V that is distributive, associative, has
identity 1, 0 · v = 0V , and so forth

Examples (Vector Spaces). 1) {0V } is the simplest possible vector space.

2) V = F , or the field itself, is a vector space

3) V = Fn = {(a1, . . . , an) : ai ∈ F}
4) V = F [x] = {All polynomials p(x) with coefficients in F}

Definition (Subspace). W is a subspace of V if:

1. W ⊂ V
2. W forms a subgroup under +

3. W is closed under scalar multiplication in F

Now a point to note is that in our discussion of groups, we defined a “structure-preserving” map,
called a homomorphism, that preserved the multiplication table of groups upon mapping. In the
case of vector spaces, we would like to define a similar “structure-preserving” map, except that
we have more structure to preserve: namely, the map must not only be a group homomorphism
under + so that f(u + v) = f(u) + f(v), but also a mapping that preserves scalar multiplication:
f(cv) = c · f(v) for c ∈ F . But this is precisely our idea of a linear transformation; that is,
“homomorphisms” between vector spaces are the linear transformations between them.
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Definition (Linear Transformation). A mapping T : V → W between vector spaces is a linear
transformation if:

1. T (v + w) = Tv + Tw

2. T (cv) = cTv for all c ∈ F

Identically to the case of group theory, we have:

ker(T ) = {v ∈ V : Tv = 0W } ⊂ V

im(T ) = {w ∈W : w = Tv for some v ∈ V } ⊂W

which are both subgroups of V , W respectively.

Definition (Quotient Space). Given vector space V and subspace W ⊂ V , the quotient space V/W
is defined as the cosets of W under +, namely:

V/W = {v +W : v ∈ V }

The quotient space itself forms a vector space over F , with the canonical linear transformation:

f : V → V/W

given by f(v) = v +W with ker(f) = W .

Then, f(v+u) = (v+u)+W = (v+W )+(u+W ) = f(v)+f(u) and f(cv) = cv+W = cv+cW =
c(v +W ) = cf(v).

Definition (Linear Combination). Given a set of vectors {v1, . . . , vn}, a linear combination of the
vectors is some:

w = a1v1 + · · ·+ anvn

for ai ∈ F .

We can then define the span of (v1, . . . vn) as the set of all linear combinations of v1, . . . , vn:

span(v1, . . . , vn) = {w ∈ V : w = a1v1 + · · ·+ anvn, ai ∈ F} ⊂ V

and the span is a subspace of V .

Moreover, V is a finite-dimensional vector space if there exists a finite set S of vectors in V such
that span(S) = V .

Examples (Finite-Dimensional, Span). 1) V = Fn: finite-dimensional, since:

S = {v1 = (1, 0, . . . , 0), . . . , vn = (0, 0, . . . , 1)}

spans V with (a1, . . . , an) = a1v1 + · · ·+ anvn.

2) V = F [x]: not finite-dimensional, since any finite set S of polynomials must have some maximal
degree N . However, F [x] contains polynomials of any finite degree, namely of N + 1. Thus, S does
not span F [x].

Finally, we consider the idea of a linear relation. A linear relation on {v1, . . . , vn} is the equation
a1v1 + · · ·+ anvn = 0V for some a1, . . . , an ∈ F , namely a linear combination that yields the null
vector in V .

Definition (Linear Independence). The set {v1, . . . , vn} ⊂ V is linearly independent in V if:

a1v1 + · · ·+ anvn = 0V ⇔ a1 = · · · = an = 0 ∈ F

That is, if there exists a linear relation on {v1, . . . , vn}, then the linear relation must be the trivial
one, with ai = 0.
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Example (Linear Independence). Let V = R3. Then consider the vectors:

S = {v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 2, 3)}

Then S is linearly independent, since a1v1 + a2v2 + a3v3 = 0 implies that 3a3 = 0 ⇒ a3 = 0, so
a1v1 + a2v2 = 0. But then this implies that a2 = 0, so that a1v1 = 0 and thus a1 = 0 since v1 6= 0.

Definition (Basis). The ordered set (v1, . . . , vn) is a basis of V if it:

1. Spans V (span(v1, . . . , vn) = V )

2. Is linearly independent

Lemma 2.2 If (v1, . . . , vn) is a basis, then any vector w ∈ V can be uniquely expressed as a linear
combination of v1, . . . , vn.

Proof Suppose otherwise, namely that there exist a1, . . . , an and b1, . . . , bn such that w = a1v1 +
· · ·+ anvn = b1v1 + · · ·+ bncn. Then (a1 − b1)v1 + · · ·+ (an − bn)vn = w−w = 0, and the vectors
are linearly independent, so ai − bi = 0⇒ ai = bi for every i.

Proposition 2.3 Any basis (v1, . . . , vn) for V yields an isomorphism of vector spaces:

f : V → Fn

where if v = a1v1 + · · ·+ anvn uniquely, then f(v) = (a1, . . . , an) ∈ Fn.

Proof Note that this mapping is clearly linear, since f(v+w) = f((a1 +b1)v1 +· · ·+(an+bn)vn) =
(a1 + b1, . . . , an + bn) = (a1, . . . , an) + (b1, . . . , bn) = f(v) + f(w), and f(cv) = (ca1, . . . , can) =
c(a1, . . . , an) = cf(v). It is also surjective, since for any arbitrary (a1, . . . , an) ∈ Fn, we can
construct v = a1v1 + · · · + anvn ∈ V such that f(v) = (a1, . . . , an). Finally, it is injective since
the kernel of the mapping is given by f(v) = f(a1v1 + · · · + anvn) = a1f(v1) + · · · + anf(vn) =
a1(1, . . . , 0) + · · ·+ an(0, . . . , 1) = a1e1 + · · ·+ anen = (0, . . . , 0) but the vectors ei form a basis of
Fn and are linearly independent, so ai = 0 and ker(f) = {0V }.

Theorem 2.4 1) If S is a finite set spanning V , there is a subset of S that forms a basis of V .

2) If L is a linearly independent set of vectors, it can be extended to form a basis of V .

Proof 1) Suppose S spans V and is finite, so S = {v1, . . . , vn}. If S is linearly independent, then
it is a basis. If not, then there exist ai such that a1vn + · · · + anvn = 0 with some ai 6= 0. We
can reorder the vectors if necessary such that an 6= 0. Then, vn = − 1

an
(a1v1 + · · · + an−1vn−1),

and so vn ∈ span(v1, . . . , vn−1). Thus, V = span(S) = span(v1, . . . , vn−1). We can repeat this
procedure until the remaining set is linearly independent while preserving spanning, since the base
case S = {v1} is linearly independent.

2) If L spans V then L is a basis. Otherwise, let S be a finite set spanning V . Let v ∈ S be such
that v /∈ L; such an element must exist, because otherwise the span of L is the same as that of
S, so L would span V . Then L′ = L ∪ {v} is linearly independent, since if L = {w1, . . . , wm} and
a1w1 + · · · + amwm + bv = 0, then b = 0 since otherwise v = − 1

b (a1w1 + · · · + amwm) would be
in the span of L. Thus, a1w1 + · · ·+ amwm = 0, but these are linearly independent, so all ai = 0.
Thus, L′ is indeed linearly independent. If L′ spans V , then L′ is a basis; otherwise, we can find
another element of the spanning set S and repeat. We must eventually reach a basis, since S is
finite, while preserving linear independence.

Theorem 2.5 If S = {v1, . . . , vn} spans V and L = {w1, . . . , wm} is linearly independent, then
n ≥ m.

Proof Since S is a spanning set, we can write wj =
∑n
i=1 aijvi for any wj ∈ L. Suppose there exist

cj such that 0V =
∑m
j=1 cjwj =

∑m
j=1 cj (

∑n
i=1 aijvi) =

∑n
i=1

(∑m
j=1 aijcj

)
vi. Then a nontrivial

linear relation would hold on L if we can find
∑m
j=1 aijcj for all i = 1, . . . , n. But these are n

equations in m unknowns cj , which always has a nontrivial solution if m > n. But if so, then this
implies that there are nontrivial cj that yield a linear relation on L, which implies L is linearly
dependent, a contradiction. Thus, n ≥ m.
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Corollary 2.6
1) All bases of V have the same number of elements, defined as the dimension of V .

2) All spanning sets S have |S| ≥ dimV .

3) All linearly independent sets L have |L| ≤ dimV .

Proof Clearly, (2) and (3) follow from Theorem 2.5. To prove (1), suppose B and B′ are two
bases of V . Then B spans while B′ is linearly independent, so |B| ≥ |B′|. But similarly, B′ spans
while B is linearly independent, so |B′| ≥ |B| and |B| = |B′|.

Corollary 2.7 Suppose W ⊂ V is a subspace for finite-dimensional V , and let (w1, . . . , wm) be a
basis for W . Then this set can be extended to a basis for V , i.e. (w1, . . . , wm, vm+1, . . . , vn).

Proof Since (w1, . . . , wm) is a basis for W , it is linearly independent. Thus, by Theorem 2.4(2),
it can be extended to a basis for V .

Now recall that if W ⊂ V is a subspace, then this yields a quotient space V/W and a canonical
linear map f : V → V/W given by f(v) = v +W .

Proposition 2.8 If (w1, . . . , wm) is a basis for W ⊂ V and (w1, . . . , wm, vm+1, . . . , vn) is a basis
for V , then (f(vm+1), . . . , f(vn)) is a basis for V/W .

Proof Consider any v+W ∈ V/W . Then v /∈W , so v =
∑n
i=m+1 aivi, so v+W =

∑n
i=m+1 aif(vi) ∈

span(f(vm+1), . . . , f(vn)). If v + W = W , then we simply map f(0) = W . Now suppose
W =

∑n
i=m+1 aif(vi) = f

(∑n
i=m+1 aivi

)
⇒
∑n
i=m+1 aivi = 0V . But since the elements are

part of a basis, they are linearly independent, so all ai = 0 and thus f(vi) are linearly independent.
Thus, (f(vm+1), . . . , f(vn)) form a basis of V/W .

Corollary 2.9 dimV = dimW + dimV/W

Putting everything together, we have an “isomorphism theorem” in terms of vector spaces:

Isomorphism Theorem on Vector Spaces. Suppose (v1, . . . , vm, vm+1, . . . , vn) is a basis of V . Then:

1) If W = span(v1, . . . , vm) and W ′ = span(vm+1, . . . , vn), then W ∩W ′ = {0} and there exists a
linear isomorphism:

W ×W ′ → V

given by (w,w′) 7→ w + w′ ∈ V .

2) If W ⊂ V is any subspace, then there exists another subspace W ′ such that the composite map
given by:

W ′ ↪→ V � V/W

where w′ 7→ w′ 7→ w′ +W is an isomorphism. In particular,

W ′ ' V/W

3) For a subspace W ⊂ V :
V 'W × V/W

4) If f : V → U is a linear transformation, then:

V ' ker(f)× im(f)

and dimV = dim(ker(f)) + dim(im(f)).
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Proof 1) The map f : W × W ′ → V is clearly a homomorphism since f(w,w′) + f(v, v′) =
(w + w′) + (v + v′) = (w + v) + (w′ + v′) = f(w + v, w′ + v′). It is surjective, since every
v =

∑n
i=1 aivi =

∑m
i=1 aivi +

∑n
j=m+1 ajvj = w + w′ for some w ∈ W and w′ ∈ W ′. Finally, it is

injective, since if 0 = w + w′ =
∑n
i=1 aivi then ai = 0 so that w = w′ = 0 and ker(f) = {0}.

2) If (v1, . . . , vm) is a basis for W , then it can be extended to a basis (v1, . . . , vm, vm+1, . . . , vn) for V ,
and W ′ = span(vm+1, . . . , vn) forms a subspace. Let f : W ′ ↪→ V be the inclusion map and g : V �
V/W be the surjection, such that h(w′) = g ◦f(w′) = w′+W ∈ V/W . It is a homomorphism since
h(w′1 +w′2) = g ◦f(w′1 +w′2) = g(w′1 +w′2) = w′1 +w′2 +W = (w′1 +W )+(w′2 +W ) = h(w′1)+h(w′2).
It is surjective since by Proposition 2.8, (h(vm+1), . . . , h(vn)) forms a basis for V/W . It is injective
since if W = h(w′) = w′ + W ⇒ w′ ∈ W . However, w′ ∈ W ′ and W ∩W ′ = {0}, so w′ = 0 and
the kernel is trivial.

3) From (1) and (2), V 'W ×W ′ 'W × V/W since W ′ ' V/W .

4) W = ker(f) is a subspace of V , so V ' ker(f) × V/ ker(f). But by the First Isomorphism
Theorem for groups, there exists an isomorphism f : V/ ker(f) → im(f) such that (v + ker(f)) =
f(v) ∈ im(f). Thus, V/ ker(f) ' im(f) and V ' ker(f)× im(f).

Change of Basis. Establishing a basis on the vector space V yields a number of 1-1 correspondences
that are particularly useful tools for discerning the kernels and images of linear transformations in
terms of matrices. We have the following correspondences:

1. If V is an n-dimensional vector space over field F :

{Bases of V } ↔ {Linear isomorphisms Fn → V }

where if B = (v1, . . . , vn) is a basis of V , then the corresponding ρB : Fn → V is given by
(a1, . . . , an) ∈ Fn 7→ a1v1 + · · ·+ anvn ∈ V .

If ρ is a linear isomorphism of Fn → V , then the associated basis is given by (ρ(e1), . . . , ρ(en)).

2. In addition:
{Linear transformations Fn → Fm} ↔Mm×n(F )

where we denote f 7→ [f ] as the matrix associated to the linear transformation f , which is
given by:

[f ] =
(
f(e1) f(e2) · · · f(en)

)
If [f ] ∈Mm×n(F ) is a m× n matrix, then the associated linear transformation f is given by
f : v 7→ [f ] · v ∈ Fm.

3. Putting correspondences (1) and (2) together: if we have a linear transformation f : V →
V ′ with associated bases B and B′ of dimensions n and m respectively, then the mapping
ρ−1
B′ fρB : Fn → Fm can be represented as:

Fn −−→
ρB

V −→
f
V ′ −−→

ρ−1

B′

Fm

Thus, this is a linear transformation on Fn → Fm, which has the associated matrix:

[ρ−1
B′ fρB ] ≡ [f ]B

′

B

In particular, we have proven the following:

Theorem 2.10 For vector spaces V, V ′ over a field F of dimensions n,m respectively:

Hom(V, V ′) 'Mm×n(F )

Proof We have constructed a bijective mapping from Hom(V, V ′) to Mm×n(F ), but we have
yet to show that this is a homomorphism. To do so, we observe that:

[c1f1 + c2f2]B
′

B = c1[f1]B
′

B + c2[f2]B
′

B

from the properties of matrices. Moreover, if f : V → V ′ and g : V ′ → V ′′ with associated
bases B,B′, B′′ respectively:

[g ◦ f ]B
′′

B = [g]B
′′

B′ [f ]B
′

B

from the composition of mappings, so the multiplication holds as well.
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The matrix is given by the coefficients of the basis vectors in V mapped to the basis in V ′;
i.e. column j in [f ]B

′

B represents the coefficients of f(vj) in terms of the basis B′. That is, if
B = (v1, . . . , vn) and B′ = (w1, . . . , wm), then:

f(vj) =

m∑
i=1

aijwi

and so the jth column of [f ] would be precisely (a1j , . . . , amj). Thus, we have:

V −→
∼

Fn

↓ ↓
W −→

∼
Fm

4. Finally, we can consider the change of basis matrix by supposing that V has two bases B1, B2

and V ′ has two bases B′1, B
′
2. In this case, we see that:

[f ]
B′2
B2

= [ρ−1
B′2
fρB2

]

= [ρ−1
B′2
ρB′1ρ

−1
B′1
fρB1

ρ−1
B1
ρB2

]

= [ρ−1
B′2
ρB′1 ] · [ρ−1

B′1
fρB1

] · [ρ−1
B1
ρB2

]

= [ρ−1
B′2
ρB′1 ] · [f ]

B′1
B1
· [ρ−1

B1
ρB2

]

Thus, we can define [ρ−1
B1
ρB2

] as the change of basis matrix. Then [ρ−1
B1
ρB2

]−1 = [ρ−1
B2
ρB1

]. In
particular, we can consider the case when f is an operator, that is V = V ′.

Definition If V is a vector space with bases B1, B2, then the change of basis matrix is:

P ≡ [ρ−1
B1
ρB2 ]

In this case, a linear operator f : V → V can be represented as a matrix in either basis by
the relation:

[f ]B2

B2
= P−1[f ]B1

B1
P

Back to GLn(F ). Using the correspondence between Hom(V, V ) and Mn×n(F ), for n-dimensional vec-
tor space V , we can now construct an isomorphism between GL(V ), the linear isomorphisms from
V to itself, and GLn(F ), the general linear group.

GL(V ) = {Linear isomorphisms V → V } ⊂ Aut(V )

Theorem 2.11 If V be an n-dimensional vector space, then:

GL(V ) ' GLn(F )

Proof Using previous results we have:

GL(V ) = {Linear isomorphisms V → V }
= {Invertible linear operators on V }
= Hom(V, V )×

' {Invertible matrices in Mn×n(F )}
= GLn(F )

Why Deal with Vector Spaces? Given that any finite-dimensional vector space is isomorphic to Fn,
it seems that we can forget about abstract vector spaces and simply deal with concrete ones of the
form Fn with transformations represented as matrices. However, there is an advantage to working
in GL(V ) rather than GLn(F ); that is, working with linear operators on vector spaces, which
are more abstract, rather than concrete matrices in GLn(F ). This is because when we deal with
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abstract linear operators, without a choice of basis, that allows us to choose a more convenient
basis later on, which yields a simpler form for the operator in terms of its matrix representation.

As an example, consider T : V → W where (v1, . . . , vk) is a basis for ker(T ). Then we can extend
this to (vk+1, . . . , vn, v1, . . . , vk), a basis for V . Then as shown earlier, (Tvk+1, . . . , T vn) is a basis
for im(T ) ⊂W , which can be extended to a basis for W . In terms of these bases for V and W , the
matrix of T becomes: (

Ir 0
0 0

)
where r = rank(T ), since T maps the first r basis vectors {vk+1, . . . , vn} to {Tvk+1, . . . , T vn} and
sends the rest to 0, since they are in the kernel.

This naturally leads to the question of when simple representations such as the above exist for
linear operators (not linear transformations), since we no longer have the freedom to choose two
bases; we can only choose a single basis B for V , and T : V → V . This problem is equivalent to
that of finding invariant subspaces of V .

Definition (Invariant Subspace). For a vector space V , the subspace W ⊂ V is an invariant subspace
for the operator T : V → V if T (W ) ⊂W .

Suppose that (w1, . . . , wm) is a basis for W , an invariant subspace, which we can extend to
(w1, . . . , wm, w

′
m+1, . . . , w

′
n) as a basis for V and where W ′ = span(w′m+1, . . . , w

′
n) is the com-

plement subspace. We can consider the following cases:

1. If W is invariant but W ′ not invariant under T , then:

[T ] =

(
A B
0 D

)
2. If both W,W ′ are invariant subspaces, then V = W ⊕W ′ (that is, v = w + w′ uniquely for

every v ∈ V ), and:

[T ] =

(
A 0
0 D

)
3. Extreme case: if there exist n one-dimensional subspaces, i.e. Wi = F ·wi, that are invariant

under T (namely, Twi = ciwi) then:

[T ] =


c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn


this decomposes V = W1 ⊕W2 ⊕ · · · ⊕Wn, which are “lines” (one-dimensional subspaces)
that are stable under T . In this case, we say that wi are eigenvectors of T , and ci are the
associated eigenvalues.

Definition (Eigenvector + Eigenvalue). Let V be a vector space over F and T be a linear operator.
Then v is an eigenvector of T if:

Tv = cv

for some c ∈ F . Then c is called the eigenvalue associated with the eigenvector v.

Non-Examples (Eigenvectors). 1) Consider the rotation of R2 by an angle θ. The associated matrix
is given by:

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
but this has no eigenvectors, since evidently no line is preserved during a rotation.

2) Consider T : F 2 → F 2 given by Te1 = e1 and Te2 = e1 + e2; then the associated matrix is:

[T ] =

(
1 1
0 1

)
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Clearly e1 is an eigenvector with eigenvalue 1. However, there does not exist any other eigenvectors.
In particular, we cannot form a basis of eigenvectors.

Consider an arbitrary vector v = ae1+be2; for v to be an eigenvector, we need: Tv = aTe1+bTe2 =
ae1 + b(e1 + e2) = (a + b)e1 + be2 = cv = cae1 + cae2. However, this implies that ca = a + b and
cb = b, so since b 6= 0 (otherwise v is just a multiple of e1), we must have c = 1. But in this case,
we must have a = a+ b, which is a contradiction if b 6= 0. Thus, e1 is the only eigenvector.

The previous examples lead us to ask when eigenvectors exist for a given operator; a related
question is to ask what the possible eigenvalues are. We note that if w is an eigenvector, w 6= 0
and Tw = cw ⇒ (T − cI)w = 0, so that w ∈ ker(T − cI). Since this is a nontrivial kernel (w 6= 0),
T − cI is not bijective, and therefore not invertible. Conversely, if T − cI is not invertible for some
c, then c is an eigenvalue for T ! This leads us to conclude:

{Eigenvalues of T} = {c ∈ F : T − cI is not invertible} = {c ∈ F : det([T ]− cI) = 0}

Definition (Characteristic Polynomial). For a linear operator T with associated matrix [T ], we
define the characteristic polynomial of T as:

f(t) = det(tI − [T ])

Lemma 2.12 The characteristic polynomial of T is well-defined; that is, it is independent of the
basis used to obtain the matrix [T ].

Proof Suppose there are two bases of V , for which the matrix representations of T are [T ], [T ]′,
and P is the change of basis matrix between the bases. Then [T ]′ = P−1[T ]P . Thus:

f ′(t) = det(tI− [T ]′) = det(tI−P−1[T ]P ) = det(P−1(tI− [T ])P ) = det(P−1) · f(t) ·det(P ) = f(t)

Proposition 2.13 The roots of the characteristic polynomial f(t) for a linear operator T are the
eigenvalues of the operator.

This Proposition allows us to limit the number of possible eigenvalues of any given operator,
through the following Lemma:

Lemma 2.14 A polynomial of degree n over a field F has at most n distinct roots in F .

Proof Use induction. For n = 1, namely f(t) = ax + b, we clearly have one root: x = −b/a.
Suppose every polynomial of degree n− 1 has at most n− 1 distinct roots. Consider a polynomial
f(t) of degree n. Then if c is a root of f(t), we have f(t) = (t−c)g(t)+d where g(t) is a polynomial
of degree n− 1 and d ∈ F . Since c is a root, f(c) = 0⇒ d = 0 so that f(t) = (t− c)g(t). Now if c′

is any other root of f(t), then c′ 6= c, so (c′ − c) 6= 0. Thus, f(c′) = 0 ⇒ g(c′) = 0, so c′ must be
a root of g(t) of degree n− 1. But by assumption, g(t) must have at most n− 1 roots. Thus, f(t)
has at most n roots.

Corollary 2.15 There exist at most n = dimV eigenvalues of a linear operator T .

Examples (Characteristic Polynomials + Eigenvalues).
1) Consider again the rotation in R2:

A =

(
cos θ − sin θ
sin θ cos θ

)
then the characteristic polynomial is:

f(t) = det(tI −A) = det

(
t− cos θ sin θ
− sin θ t− cos θ

)
= t2 − (2 cos θ)t+ 1

Note that if θ 6= 0, π, then |2 cos θ| < 2, and therefore the discriminant of the polynomial is
b2 − 4ac = 4 cos2 θ − 4 < 0. Thus, there are no real roots and so no eigenvalues over R.
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2) For A =

(
1 1
0 1

)
as earlier, we have: f(t) = (t−1)2 and so t = 1 is the only eigenvalue, as shown.

3) For general A =

(
a b
c d

)
, we have:

f(t) = t2 − (a+ d)t+ (ad− bc)

As a concrete example, consider A =

(
3 2
1 4

)
; then f(t) = t2 − 7t+ 10 = (t− 5)(t− 2). Thus, the

eigenvalues are 5 and 2. To find the associated eigenvectors, we must solve:

Av1 = 5v1, Av2 = 2v2

Now note that whatever they are, v1, v2 must be linearly independent if 5 6= 2 in F . Otherwise,
v1 = cv2 and therefore Tv1 = T (cv2) = cTv2 = 2cv2. But also: Tv1 = 5v1 = 5cv2, which is a
contradiction. Thus, more generally:

Theorem 2.16 Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Cayley-Hamilton Theorem. Consider the linear operator T : V → V . Then T ∈ Hom(V, V ), which
is a vector space of dimension n2 (considered in terms of matrices). Then the set:

{I, T, T 2, . . . , Tn
2

}

must be linearly dependent, since it consists of n2 + 1 vectors in an n2-dimensional space. Thus,
there exists a nontrivial linear relation:

a0I + a1T + a2T
2 + ·+ an2Tn

2

= 0

This defines a polynomial of degree ≤ n2 satisfied by T ; that is, we can define:

p(t) = an2tn
2

+ · · ·+ a1t+ a0

for which p(T ) = 0.

One may ask whether there is a “smallest degree” polynomial satisfied by the operator T .

Theorem 2.17 (Cayley-Hamilton). An operator T satisfies its own characteristic polynomial.

Proof We consider the case of n distinct eigenvectors, such that the characteristic polynomial
becomes:

f(t) = (t− c1)(t− c2) · · · (t− cn)

Then we can choose a basis of eigenvectors such that:

[T ] =


c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn


Then f(T ) ≡ f([T ]) = ([T ]−c1I) · · · ([T ]−cnI), and the ith term has cj−ci in the diagonal entries
and 0 in the (i, i)th entry. Thus, since the product of diagonal matrices is simply the product of
the diagonal entries, every diagonal entry in the final product is 0 (since there is a 0 term for every
product on the diagonal), and thus T satisfies the polynomial f(t).
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3 Symmetries + Group Actions

What ties together concepts from the seemingly disparate domains of group theory and vector space
theory is the orthogonal group acting on Rn, and more generally group actions in linear spaces.

Definition (Inner Product). For vector space Fn over a field F , with vectors v = (v1, . . . , vn), w =
(w1, . . . , wn) ∈ Fn, the inner product of v, w is defined as

〈v, w〉 = v1w1 + · · ·+ vnwn

An inner product puts additional structure on the vector space V = Fn. Recall that we define the
general linear group on F as GLn(F ) ' { Isomorphisms Fn → Fn}. Then, just as isomorphisms
and homomorphisms preserve the multiplicative structure of the vector space, we can consider
mappings that preserve the inner product structure.

Definition (Orthogonal Group). For vector space Fn over a field F , the orthogonal group is the
subgroup of GLn(F ) that preserves the inner product, denoted On(F ):

On(F ) = {A ∈ GLn(F ) : 〈Av,Aw〉 = 〈v, w〉}

It is easy to check that On(F ) ⊂ GLn(F ) is a subgroup. It trivially contains I. Moreover, it is
closed under multiplication, since 〈ABv,ABw〉 = 〈A(Bv), A(Bw)〉 = 〈Bv,Bw〉 = 〈v, w〉. Finally, it
contains inverses, since if A ∈ On(F ): 〈v, w〉 = 〈Iv, Iw〉 = 〈A(A−1v), A(A−1w)〉 = 〈A−1v,A−1w〉.
In fact, we know that 〈ei, ej〉 = δij for the standard orthonormal basis on Fn, which allows us to
derive a much simpler condition for checking whether a matrix is in the orthogonal group:

Proposition 3.1 A ∈ On(F )⇔ At = A−1.

Proof Suppose that A ∈ On(F ). Then 〈Aei, Aej〉 = 〈ei, ej〉 = δij . But the first inner product is
the matrix product of the ith and jth columns of A, since Aei is the vector representing the ith

column of the matrix A. Thus, this implies that AtA = I, and therefore At = A−1.

Conversely, suppose that At = A−1. Then 〈Av,Aw〉 = (Av)t(Aw) = vt(AtA)w = vtw = 〈v, w〉.
Thus, A ∈ On(F ).

Corollary 3.2 For matrix A ∈ On(F ), we have det(A) = ±1.

Proof det(AtA) = det(I) = 1, but det(AtA) = det(At) det(A) = det(A)2. Thus, det(A) = ±1.

Definition (Special Orthogonal Group). We define the subgroup of On(F ) with determinant +1 as
the special orthogonal group, denoted SOn(F ):

SOn(F ) = {A ∈ On(F ) : det(A) = 1}

Note that SOn(F ) has index 2 in On(F ), since the determinant is a homomorphism; that is,
det : On(F )→ {±1} is a homomorphism, since det(AB) = det(A) det(B). But this implies that:

SOn(F ) = ker(det)COn(F )

and so we can construct a quotient group:

On(F )/SOn(F ) = { Cosets of SOn(F )} ' {±1}

Proposition 3.3 Permutation matrices are in On(F ), which yields an injective homomorphism:

An C Sn
↓ ↓

SOn(F ) C On(F )

Proof We note that if P is the permutation matrix corresponding to a permutation ρ, then
〈Pei, P ej〉 = 〈eρ(i), eρ(j)〉 = δij as desired.
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We now move on to the real case, in which F = R. Then, 〈v, v〉 =
∑n
i=1 v

2
i ≥ 0; that is, we have an

order structure on R. Moreover, 〈v, v〉 = 0↔ v = 0. Thus, we can define the notion of a “length”
on Rn.

Definition (Norm). For v ∈ Rn, we define the norm of v as: |v| =
√
〈v, v〉

This yields the famous Cauchy-Schwarz inequality, which in turn allows us to define angles in an
arbitrary Rn space:

Lemma 3.4 (Cauchy-Schwarz). For any v, w ∈ Rn, we have:

−1 ≤ 〈v, w〉
|v| · |w|

≤ 1

Thus, we can define the angle between v, w as:

θ = cos−1

(
〈v, w〉
|v| · |w|

)
We finally note that the concepts of length and angle both depended entirely on the inner product.
Thus, if a transformation preserves the inner product, it automatically preserves lengths and angles
in Rn.

Corollary 3.5 On(R) acts linearly on Rn and preserves lengths and angles (is an isometry).

We also state an important result about the eigenvalues of an orthogonal matrix over an arbitrary
field F :

Proposition 3.6 If A ∈ On(F ) and v is an eigenvector of A, the associated eigenvalue is ±1.

Proof Let λ be the eigenvalue of eigenvector v; then Av = λv. Then 〈v, v〉 = 〈Av,Av〉 = 〈λv, λv〉 =
λ2〈v, v〉 so that λ1 = 1⇒ λ = ±1.

Geometry of SO2. We now explore the geometry of SO2(R) in more depth to gain intuition for the
special orthogonal group. Consider arbitrary A ∈ SO2(R), and standard basis (e1, e2) for R2. We
note the following:

1. Ae1, Ae2 must lie on the unit circle, since A preserves norms.

2. Ae1 ⊥ Ae2, since 〈Ae1, Ae2〉 = 〈e1, e2〉 = 0.

3. If we let Ae1 = (cos θ, sin θ) since it must lie on the unit circle from (1), we note that by (2),
we must have Ae2 = (−sinθ, cos θ) or Ae2 = (sin θ,− cos θ).

4. However, we rule out the latter because this would yield a matrix with determinant −1.

Thus, we have found that an arbitrary matrix A ∈ SO2(R) must have the form:

A =

(
cos θ − sin θ
sin θ cos θ

)
That is, an element of SO2(R) rotates the plane by an angle θ! Moreover, if we let ρθ = rot(θ)
denote the transformation of the plane rotating by θ, we note that ρθ ◦ ρψ = ρθ+ψ = ρψ ◦ ρθ, so
SO2(R) is in fact Abelian.

Proposition 3.7 There exists an isomorphism of Abelian groups

f : SO2(R)→ {z ∈ C× : |z| = 1}

such that if A rotates the plane by θ, then f : A 7→ eiθ.
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Geometrically speaking, SO2(R) is exactly the unit circle; there is a one-to-one correspondence
(isomorphism) between elements of SO2(R) and a point on the unit circle, given by θ.

However, the surprising but true fact is that O2(R) is not Abelian. Thus, what are the elements in
O2(R) \ SO2(R)? We begin by noting the following:

Proposition 3.8 Every element A ∈ O2(R) \ SO2(R) has 2 orthogonal eigenvectors, with associ-
ated eigenvalues +1 and −1.

Proof The characteristic polynomial of A is given by x2 − trace(A)x− 1 = 0, since det(A) = −1.
We note that the discriminant of this quadratic polynomial is trace(A)2 + 4 > 0, and so it has two
real roots; that is, A is two eigenvalues. Since in terms of the eigenbasis A is a diagonal matrix with
eigenvalues on the diagonal, we have det(A) = λ1λ2 = −1, and λi = ±1 by Proposition 3.6. Thus,
we have λ1 = +1, λ2 = −1, and there exist eigenvectors v1, v2 such that Av1 = v1, Av2 = −v2.
Moreover, v1 ⊥ v2, since 〈v1, v2〉 = 〈Av1, Av2〉 = 〈v1,−v2〉 = −〈v1, v2〉 ⇒ 〈v1, v2〉 = 0.

Geometrically, we can consider A ∈ O2(R) \ SO2(R) as reflecting v2 about the line along v1; thus,
every element in O2(R) \ SO2(R) has order 2.

Geometry of SO3. Now let us consider the special orthogonal group in R3, denoted SO3(R). We first
note the following:

Theorem 3.9 (Euler). Any A ∈ SO3(R) has an eigenvalue of +1. Thus, there exists v ∈ R3

such that Av = v.

Proof The characteristic polynomial of any A ∈ SO3(R) has degree 3, so it has 3 complex roots.
There are two possibilities: 1) {λ1, λ2, λ3} are all real; 2) {λ, z, z̄} such that z, z̄ are complex

conjugates and λ ∈ R. In case (1), since we must have λi = ±1 and det(A) =
∏3
i=1 λi = +1, we

must have at least one λi = +1. In case (2), zz̄ ≥ 0, so det(A) = λzz̄ = +1 implies that λ = +1.

Now to determine the geometric interpretation of an element in SO3(R), we make the following
observation:

Proposition 3.10 If v is the eigenvector of A ∈ SO3(R) with eigenvalue 1, then A preserves the
plane perpendicular to v.

Proof If w is in the plane perpendicular to v, then w ⊥ v, so that 〈v, w〉 = 0. But then 0 =
〈Av,Aw〉 = 〈v,Aw〉, so Aw ⊥ v as well.

This implies that A must take the form:

A =

1 0 0
0 . .
0 . .


where the basis is given by {v, e1, e2} for e1, e2 spanning the plane orthogonal to v. Now if we denote
the 2 × 2 submatrix by A′, then we must have that det(A′) = 1, since 1 = det(A) = 1 · det(A′).
Moreover, A′ must be an orthogonal transformation of the plane, since the transformation A
restricted to the plane must preserve the inner product. Thus, we find that A′ ∈ SO2(R), and so:

Proposition 3.11 For given A ∈ SO3(R), there exists a basis (v, e1, e2) of R3 such that the matrix
representation of A takes the form:

A =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


That is, there exists a basis with respect to which A preserves the first basis vector and rotates the
plane orthogonal to the vector by some angle θ.
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Definition (Isometry). An isometry of Rn is a map Rn → Rn that preserves distance d(v, w) = |v−w|
between any two points v, w ∈ Rn.

Proposition 3.12 If m : Rn → Rn is an isometry and m(0) = 0, then m = A is a linear
transformation in On(R).

Proof We note that:

|v − w|2 = 〈v − w, v − w〉 = |v|2 + |w|2 − 2〈v, w〉

Thus, since m preserves |v − w|, |v|, |w|, it must preserve 〈v, w〉.

The set of all isometries of Rn is denoted the isometry group of Rn. Let us consider the group
G of isometries of Rn. Clearly one subgroup of G is the group of translations, consisting of
transformations m such that m(v) = v+ b. This subgroup is isomorphic to (Rn,+), or the additive
group of Rn, since the map m(v) = v + b 7→ b ∈ Rn is an isomorphism.

Proposition 3.13 If G is the isometry group on Rn, then G ≈ Rn×G0, where G0 is the group of
isometries preserving the origin, in the sense that every element m ∈ G can be written as tb ◦m0.

Proof Given an arbitrary motion m ∈ G such that m(0) = b, then we note that (t−b ◦m)(0) =
0⇒ t−b ◦m = m0 ∈ G0 so m = tb ◦m0.

Proposition 3.14 G0 ' On(R)

Proof If m ∈ G0, then m preserves the inner product, since d(v, w)2 = d(v, 0)2 +d(w, 0)2−2〈v, w〉
and distances are preserved (as is the origin); thus, G0 ⊂ On. Now to show that On ⊂ G0, suppose
that (e1, . . . , en) is the standard orthonormal basis of Rn. Then for m ∈ G0, (m(e1), . . . ,m(en)) is
another orthonormal basis, since it preserves the inner product. Now let A ∈ On with column vec-
tors

(
m(e1) m(e2) · · · m(en)

)
. Then, AtA = I since every element (AtA)ij = 〈m(ei),m(ej)〉 =

δij .
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4 Bilinear Forms

We build on the concept of an inner product by introducing their generalization, bilinear forms. Bilinear
forms help to solidify the link between groups, their representations, and vector spaces, and hint at the
classical groups.

5 Linear Groups + Group Representations

The classical groups (orthogonal, unitary, and symplectic) precisely tie together ideas from abstract
group actions (i.e. action of GLn(F ), stabilizers) and bilinear forms/vector spaces.
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6 Ring Theory

To be continued!
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