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1 Why are Definitions Important?

In section, we noted that the motivation for definitions like irreducibility, ape-
riodicity, and recurrence was to ensure that a stationary distribution existed
and was unique. Moreover, given the “stationary” title, we’d want the Markov
chain to converge to the distribution in the “long-run”, or as n — oo. We will
explore why these definitions are necessary through two simple examples.

Proposition 1.1 Any finite-state, homogeneous Markov chain has a stationary
distribution.

While the proof is a little technically involved for the purposes of this course,
it’s in fact true that for all Markov chains we’ll be concerned with (i.e. finite
state space, time-homogeneous so transition matrix exists), a stationary distri-
bution exists. However, it may not be unique.

Example. Consider the simple Markov chain given by the transition matrix:
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In other words, it stays in its current state with probability 1. Note that
any distribution over these two states is a stationary distribution under this
transition matrix! So the stationary distribution is clearly not unique.

So we would like to examine when a stationary distribution is in fact unique.
It turns out that there is a simple condition.

Proposition 1.2 Any finite-state, homogeneous Markov chain that is irreducible
has a unique stationary distribution,

Note that in the example above, you couldn’t reach either state from the
other, so it was in fact reducible. As long as we can reach any state from any
other state (i.e. irreducible), that is, all states are recurrent with each other,
the Markov chain has a unique stationary distribution.

However, this doesn’t necessarily mean that the distribution over the states,
given some arbitrary initial state, will converge to the stationary distribution in
the long-run!



Example. Consider another simple Markov chain with the transition ma-

trix: 01
o= (1 o)

This Markov chain switches states at every time point with probability 1.
Now consider initial state Xy = 1. Note that the distribution over the states is:

1 ifnis even
X”_{2 if n is odd

Thus, the distribution emphatically does not converge to any stationary dis-
tribution! One additional condition ensures that this does not happen.

Proposition 1.3 Any finite-state, homogeneous Markov chain that is irreducible
and aperiodic has a unique stationary distribution 7, and lim, . P(X,) = .

In other words, adding the condition of aperiodicity ensures that the long-run
distribution over the states converges to the stationary distribution, regardless
of the initial state/distribution. Recall that a Markov chain is aperiodic if and
only if every state is aperiodic.

2 Reversibility

Solving the equations m = 7@ can be troublesome when the state space is large.
Another definition, reversibility, helps us in these times of need.

Definition A Markov chain with transition matrix Q) is reversible with respect
to a probability distribution over the states 7 if m;Q;; = 7;Q;;.

Proposition 2.1 If a Markov chain is reversible with respect to distribution r,
then 7 is a stationary distribution for the Markov chain.

Proof I provide a quick proof of this because I didn’t quite know why this was
true for a while, but it turns out that it’s rather simple. Recall that >~, Q;r =1,
because all states must transition somewhere. Thus, Q;; =1 -5, 2i @jk, and
S0:
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where we applied the reversibility condition to each of the terms in the

sum in the last equality. However, inputting this into our original reversibility
condition of m;Q;; = m;Q;;, we have:

miQij = — > mkQu;
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which is exactly the condition needed for stationarity! |



