
Introduction to R

(for Stat 102, 107, 111, 139)

W. Ryan Lee

This guide is designed for students of Statistics 102, 107, 111, and 139 at Harvard, and is intended
to serve as a basic introduction to using R for data analysis. Please follow along on your own machine
with the examples!

1 Math

Common Operations Anything that a calculator can do, R can do better:

> exp(2)

[1] 7.389056

> sin(pi/6)

[1] 0.5

> log (10); log(10, base = 10)

[1] 2.302585

[2] 1

> sqrt (16)

[1] 4

> abs(3-7)

[1] 4

> round(pi , 0); round(pi, 1); round(pi, 4)

[1] 3

[2] 3.1

[3] 3.1416

Matrices R works very well with matrix operations. The way you construct a matrix is to create a
vector and then “shape it” into the dimensions you want. For example:

> matrix(c(1,2,3,4,5,6), byrow = T, nrow = 3)

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

What the above code says is:

1. Form the vector (1, 2, 3, 4, 5, 6)

2. Create the matrix “by row”; that is, put the first element in a11, then the second in a12 (not
a21), and so forth.

3. Use 3 rows. (R figures that it then needs 2 columns)

Matrix Operations Suppose we define the matrices:

A =

1 2
3 4
5 6

 , B =

 7 8
9 10
11 12


(We’ll figure out how to do this in the next section.) Then, R can do transposes, matrix multipli-
cation, etc.:

1

> t(A)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> t(A) %*% B

[,1] [,2]

[1,] 89 98

[2,] 116 128

> A * B

[,1] [,2]

[1,] 7 16

[2,] 27 40

[3,] 55 72

> A[1:2,]

[,1] [,2]

[1,] 1 2

[2,] 3 4

> solve(A[1:2 ,])

[,1] [,2]

[1,] -2.0 1.0

[2,] 1.5 -0.5

Note that * is element-wise multiplication, whereas %∗% is matrix multiplication. “solve” yields
the matrix inverse.

2 Syntax

Variables + Computation To define variables, you can use either ¡- or =:

> A <- matrix(c(1,2,3,4,5,6), byrow = T, nrow = 3)

> A

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

> x = c(1,0,0)

> x

[1] 1 0 0

> t(A) %*% x

[,1]

[1,] 1

[2,] 2

> y <- c(2,3,3)

> x + y

[1] 3 3 3

> z = A[,1]; w = A[,2]

> z

[1] 1 3 5

> z + w

[1] 3 7 11

One particularly useful way to create sequence vectors in R is the following:

> x <- 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> y <- seq(1,10)

[1] 1 2 3 4 5 6 7 8 9 10

Control Flow + Loops Since R is built on C, most of the control flow syntax is similar to that of C.
However, for loops are particularly simple in R (i.e. like Python):

2

> for (i in 1:100) {

> print(i*2)

> }

It used to be the case that for loops were frowned upon, and much less efficient, compared to
using a more advanced method, apply. However, for most usages the differences are generally not
significant enough to be too consequential.

Control flow tools include if, else, else if, and so forth:

> x <- 9001

> if (x > 9000) {

> print("It’s over 9 ,000!!!")

> } else {

> print("Nope .")

> }

[1] "It’s over 9 ,000!!!"

> if (x > 10000) {

> x * 2

> } else if (x > 9000 & x <= 10000) {

> print("But it’s not over 10 ,000!")

> } else {

> print("Weak !")

> }

[1] "But it’s not over 10 ,000!"

3 Inputting Data

To input data:1

1. Switch into the directory that has the data set, in R. For example, if we want to go to ∼/Downloads:

> setwd ("~/ Downloads ")

2. Use a load function to load the data set, and assign it a variable. We will generally deal with two
kinds of data sets:

• CSV files: Download the crabs.csv dataset: http://won1k.github.io/data/crabs.csv

We can input this dataset into R by using:

> crabs <- read.csv("crabs.csv")

> head(crabs)

color spine width satell weight

1 3 3 28.3 8 3050

2 4 3 22.5 0 1550

3 2 1 26.0 9 2300

4 4 3 24.8 0 2100

5 4 3 26.0 4 2600

6 3 3 23.8 0 2100

• DAT files: Sometimes, data files for R come in the .dat format. The same horseshoe crabs
dataset can be found in this format at: http://won1k.github.io/data/crabs.dat.

This can be inputted into R by using:

> crabs <- read.table(" crabs.dat", header = T)

Note we had to use the “header = T” option because the dataset came with column names.
Otherwise, R would just create new ones, i.e. “V1, V2, ...”

1There is one true dataset you need to know, and it concerns the mating patterns of horseshoe crabs. Dataset was
provided by A. Agresti, Foundations of Linear and Generalized Linear Models, 2015.

3

http://won1k.github.io/data/crabs.csv
http://won1k.github.io/data/crabs.dat

4 Summary Statistics + Regression

Where R really shines is letting you calculate statistics in single-line commands. For example, let’s return
to our beloved crabs dataset.

Selecting Variables The first thing to note is that we can select individual columns in a dataset in
one of two ways:

> crabs$width
[1] 28.3 22.5 26.0 24.8 26.0 23.8 26.5 ...

> crabs [,3]

[1] 28.3 22.5 26.0 24.8 26.0 23.8 26.5 ...

Summaries for Individual Variables Let’s let x be the column with the shell widths of these crabs.
Then we can find summary statistics:

> x <- crabs$width

> mean(x)

[1] 26.29884

> sd(x)

[1] 2.109061

> var(x)

[1] 4.448138

> length(x)

[1] 173

> median(x)

[1] 26.1

We might also be interested in how two variables are correlated. Perhaps girth-ier crabs are
associated with more satellites?

> y <- crabs$satell

> cor(x,y)

[1] 0.3398903

Selecting Subsets One important technique for data analysis in R is to be able to select subsets of
your data that meet a certain criteria. For example, we may only be concerned with horseshoe
crabs that have color 3. In that case, we can do one of two things:

> crabs3 <- subset(crabs , crabs$color == 3)

> head(crabs3)

color spine width satell weight

1 3 3 28.3 8 3050

6 3 3 23.8 0 2100

9 3 1 23.7 0 1950

12 3 3 25.8 0 2650

13 3 3 28.2 11 3050

15 3 1 26.0 14 2300

> crabs3 .2 <- crabs[crabs$color == 3,]

> head(crabs3 .2)

color spine width satell weight

1 3 3 28.3 8 3050

6 3 3 23.8 0 2100

9 3 1 23.7 0 1950

12 3 3 25.8 0 2650

13 3 3 28.2 11 3050

15 3 1 26.0 14 2300

Note that in either case, we have ended up with the subset of the data that contains precisely the
rows for which the color is 3. We can use identical methods for conditions such as ≤,≥.

Overall Summary One useful command is to run a “summary” on the entire dataset, which yields
max, min, mean, etc. for every variable in the dataset:

> summary(crabs)

color spine width satell weight

Min. :2.000 Min. :1.000 Min. :21.0 Min. : 0.000 Min. :1200

4

1st Qu .:3.000 1st Qu .:2.000 1st Qu .:24.9 1st Qu.: 0.000 1st Qu .:2000

Median :3.000 Median :3.000 Median :26.1 Median : 2.000 Median :2350

Mean :3.439 Mean :2.486 Mean :26.3 Mean : 2.919 Mean :2437

3rd Qu .:4.000 3rd Qu .:3.000 3rd Qu .:27.7 3rd Qu.: 5.000 3rd Qu .:2850

Max. :5.000 Max. :3.000 Max. :33.5 Max. :15.000 Max. :5200

Regression We can also run a regression between two or more variables. We use the “lm” (for “linear
model”, i.e. the subject of Stat 139) command:

> fit <- lm(y ~ x)

> summary(fit)

Call:

lm(formula = crabs$satell ~ crabs$width)

Residuals:

Min 1Q Median 3Q Max

-4.1374 -2.2093 -0.7379 1.8921 11.2326

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.4244 2.8324 -3.680 0.000312 ***

crabs$width 0.5074 0.1074 4.726 4.76e-06 ***

...

Note that we use “lm” with the formula y ∼ x to say that we want to regress y on x, that is fit a
line y = a · x + b. The “(Intercept)” estimate yields the estimated value of b, while the coefficient
of “crabs$width” is the estimated value of a.

5 Graphics + Plotting

Of course, statistics is no fun without the pretty pictures. Fortunately, R knows all about making plots
and graphs!

Histograms One of the quickest ways to get a sense of a dataset is through a histogram:

> hist(crabs$width)

> hist(crabs$width , breaks = 25)

The “breaks” option is often quite useful to get more fine-grained observations.

Plot For plotting 2 variables, the simplest (and often most useful) way is to use the “plot” command:

> plot(crabs$width , crabs$satell)

> plot(crabs$satell ~ crabs$width)

Both of the above commands, as you can test, yield the exact same plot. Thus, you can use:

> plot(x,y)

> plot(y ~ x)

as you prefer! (Try plotting other relationships between the variables in the dataset.)

Adding Lines We can also add fitted lines to our plot:

> fit <- lm(crabs$satell ~ crabs$width)
> plot(crabs$width , crabs$satell)
> abline(fit)

Moreover, we can also add vertical bars at designated x values, for example at the mean and 2
standard deviations:

> plot(crabs$width , crabs$satell)
> abline(v = mean(crabs$width), lty = 2)

> abline(v = mean(crabs$width) + 2 * sd(crabs$width), lty = 3)

> abline(v = mean(crabs$width) - 2 * sd(crabs$width), lty = 3)

5

As you can guess, the “lty” option allows us to change the style of the lines that we plot.

Tables + Barplots Another useful command is table, which shows the frequency of particular values
in the dataset. For example:

> table(crabs$color)
2 3 4 5

12 95 44 22

> table(crabs$satell)
0 1 2 3 4 5 6 7 8 9 10 11 12 14 15

62 16 9 19 19 15 13 4 6 3 3 1 1 1 1

This might look an awful lot like a barplot, and indeed we can easily make a barplot from a table:

> barplot(table(crabs$satell), name = "# of Satellites ")

Contingency Tables One very nice use of the “table” command is to build a contingency table between
two variables. for example:

> table(crabs$satell , crabs$color)
2 3 4 5

0 3 26 18 15

1 0 11 5 0

2 1 6 2 0

3 1 9 7 2

4 1 12 5 1

5 1 11 2 1

6 3 8 2 0

7 0 3 1 0

8 1 4 0 1

...

This tells us, for example, that the number of crabs in the dataset with color 3 and 4 satellites is
12. Similarly, there are 7 crabs in the dataset with color 4 and 3 satellites.

Scatterplot + Correlation Matrix Another fun technique for exploratory data analysis is to create a
scatterplot matrix in R, which visualizes correlations between every pair of variables in the dataset
(or the subset you choose).

> attach(crabs)

> pairs (~ width + satell + weight)

which yields scatterplots between width and weight, width and satell, and so forth.

We can also construct a correlation matrix for all the variables in the dataset, or a subset, as
follows:

> cor(crabs)

color spine width satell weight

color 1.0000000 0.37850163 -0.2643863 -0.19078455 -0.2507772

spine 0.3785016 1.00000000 -0.1218946 -0.08993242 -0.1664817

width -0.2643863 -0.12189458 1.0000000 0.33989033 0.8868715

satell -0.1907846 -0.08993242 0.3398903 1.00000000 0.3692474

weight -0.2507772 -0.16648173 0.8868715 0.36924744 1.0000000

> cor(crabs [,3:5])

width satell weight

width 1.0000000 0.3398903 0.8868715

satell 0.3398903 1.0000000 0.3692474

weight 0.8868715 0.3692474 1.0000000

A fun way to visualize this correlation matrix is to use the corrplot library:

> install.packages(’corrplot ’)

> library(’corrplot ’)

> M <- cor(crabs [,3:5])

> corrplot(M)

6

	Math
	Syntax
	Inputting Data
	Summary Statistics + Regression
	Graphics + Plotting

