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1 Probability Spaces + Measures

The probability space is defined by a triple (Ω,F , P ), where Ω is the entire space (sample space), F
is the σ-algebra (basically all events whose probabilities can be “measured”), and P is the measure.

There is very little to be said about Ω; any set will do.

1.1 σ-Algebra

Given any set Ω, the algebra on Ω is a collection F0 of subsets of Ω such that:

1. Ω ∈ F0

2. E ∈ F ⇒ Ec ∈ F0

3. E,F ∈ F ⇒ E ∪ F ∈ F0

This definition implies that ∅ ∈ F0, and E,F ∈ F0 ⇒ E ∩ F ∈ F0.

Definition Given set Ω, F is a σ-algebra on Ω if F is an algebra, and additionally:

En ∈ F ⇒ ∪∞n=1En ∈ F

That is, F is closed under countable operations. Note that this implies that if En ∈ F ⇒ ∩∞n=1En ∈ F ,
since Ecn ∈ F and so ∪nEcn ∈ F .

Given any collection of subsets C of Ω, σ(C) is the σ-algebra generated by C if σ(C) is the smallest
σ-algebra on Ω s.t. C ∈ σ(C). Alternatively, σ(C) = ∩{Σ : C ∈ Σ} where Σ are σ-algebras on Ω.

Example: Borel σ-Algebra. The most important example of a generated σ-algebra is B =
σ({open sets on R}). Importantly, define π(R) = {(−∞, x] : x ∈ R}. Then we have:

B = σ(π(R))

(π(R) is a π-system, as defined later.)

(Ω,F) is a measurable space if F is a σ-algebra on Ω.

1.2 Probability Measure

A set function µ : F → [0,∞] maps subsets of Ω into the extended reals. Set functions can be:

1. Additive: if µ(∅) = 0 and if E,F ∈ F , then:

E ∩ F = ∅⇒ µ(E ∪ F ) = µ(E) + µ(F )

2. Countably Additive: if µ(∅) = 0 and Fn are disjoint sets in F , then:

µ (∪∞n=1Fn) =

∞∑
n=1

µ(Fn)
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A set function that is countably additive is called a measure.

The triple (Ω,F , µ) is called a measure space.

If µ(Ω) = 1, then µ = P is a probability measure on Ω, and (Ω,F , P ) is a probability space.

Important properties of measures:

1. Countable subadditivity : For any Fn ∈ F , µ(∪∞n=1Fn) ≤
∑∞
n=1 µ(Fn)

2. Continuity : If Fn ∈ F and Fn ↑ F , then µ(Fn) ↑ µ(F )

Similarly, if Gn ∈ F and Gn ↓ G with µ(Gk) <∞ for some k, then µ(Gn) ↓ µ(G).

1.3 π-Systems and λ-Systems

As noted by Williams, “σ-algebras are ‘difficult’, but π-systems are ‘easy’; so we aim to work with the
latter.”

Essentially, whenever we want to prove something about a measure P , we construct a measure P0

s.t.: 1) P = P0 on a collection of subsets that forms a π-system; 2) P0 has the desired property on that
π-system. We then use Dynkin’s theorem (or its corollary) to show that P = P0 on the entire σ-algebra.

Definition Given set Ω, I is a π-system on Ω if:

I1, I2 ∈ I ⇒ I1 ∩ I2 ∈ I

Examples: π-Systems.

1. Most important: π(R) = {(−∞, x] : x ∈ R}

2. Similarly, {(a, b] : a, b ∈ R}

3. Topology of any topological space

4. π-system generated by X: If X is an RV, {X−1((−∞, x]) : x ∈ R}

Definition Given set Ω, L is a λ-system on Ω if:

1. Ω ∈ L

2. A ∈ L ⇒ Ac ∈ L

3. An ∈ L and are disjoint ⇒ ∪∞n=1An ∈ L

(Alternatively: 1) Ω ∈ L; 2) A,B ∈ L with A ⊂ B ⇒ B \A ∈ L; 2) An ∈ L and An ↑ A, then A ∈ L.)

Examples: λ-Systems.

1. Most important: Collection of subsets where two given measures agree form a λ-system, that is:
{A : µ1(A) = µ2(A)}

2. Key property: If J is a λ-system and π-system, then J is a σ-algebra.

Theorem 1.1 (Dynkin’s π-λ Theorem) If I is a π-system on Ω and L is a λ-system s.t. I ⊂ L,
then σ(I) ⊂ L.

Corollary 1.2 (Uniqueness of Extension) Suppose µ1, µ2 are probability measures on Ω,F s.t. µ1 = µ2

on I, where F = σ(I). Then:
µ1 = µ2 on F
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Proof. The subsets on which µ1 = µ2 forms a λ-system L, so F = σ(I) ⊂ L by Dynkin’s theorem.

Theorem 1.3 Caratheodory’s Extension Theorem) Let F0 be an algebra on Ω, and F = σ(F0).
If µ0 is a countably additive set function: µ0 : F0 → [0, 1] with µ0(Ω) = 1, then there exists a unique
probability measure µ on (Ω,F), s.t.:

µ = µ0 on F0

Important note: Now that we have Caratheodory’s Extension and Uniqueness of Extension results,
we only need to prove a result on an algebra; we know that as long as the measure is countably additive,
we can uniquely extend it to our desired σ-algebra. (i.e. construction of Lebesgue measure)
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2 Events

Events are simply subsets of Ω in F . The interesting events are often limits, so we need to define limits
of sets.

Basic translation:

• there exists n (∃) = ∪n

• for all n (∀) = ∩n

Recall: If (xn) is sequence of reals, lim supxn = limm→∞
(
supn≥m xn

)
=↓ limm

(
supn≥m xn

)
Similarly, lim inf xn = limm→∞ (infn≥m xn) =↑ limm (infn≥m xn)
Finally, xn converges in [−∞,∞] iff lim supxn = lim inf xn = limxn

Definition (lim supEn, En, i.o.) For sequence of events En ∈ F , the event lim supEn or [En, i.o.] is:

lim supEn = [En, i.o.]

= ∩∞m=1 ∪n≥m En

= {ω : ∀m,∃n ≥ m such that ω ∈ En}
= {ω : ω ∈ En for infinitely many n}

Definition (lim inf En, En, ev) For sequence of events En ∈ F , the event lim supEn or [En, ev] is:

lim inf En = [En, ev]

= ∪∞m=1 ∩n≥m En

= {ω : ∃m such that ∀n ≥ m,ω ∈ En}
= {ω : ω ∈ En for every sufficiently large n}

Lemma 2.1 (Fatou’s Lemmas for Probability) Let En ∈ F . Then:

1. P (lim supEn) ≥ lim supP (En)

2. P (lim inf En) ≤ lim inf P (En)

Proof. 1. Consider Fm = supn≥mEn. Then Fm are monotonically decreasing in m, so apply continu-
ity of measure to see that: P (lim supEn) = P (limm→∞ Fm) = limm→∞ P (Fm). But P (supn≥mEn) ≥
P (Ek for every k ≥ m, so P (Fm) ≥ supn≥m P (En), and limm→∞ P (Fm) ≥ limm→∞ supn≥m P (En) =
lim supP (En).
2. We letGm = inf n ≥ mEn, note that it is monotonically increasing, apply continuity to get P (lim inf En) =
limm→∞ P (Gm), note that P (Gm) ≤ infn≥m P (En), and obtain limm→∞ P (Gm) ≤ lim inf P (En).

Lemma 2.2 (Borel-Cantelli) If En ∈ F and
∑∞
n=1 P (En) <∞, then P (En, i.o.) = 0.

Proof. Let Fm = supn≥mEn. Since
∑∞
n=1 P (En) <∞, limm→∞

∑
n≥m P (En) = 0. But P (lim supEn) ≤

P (Fm) ≤
∑
n≥m P (En) for every m, so P (lim supEn) ≤ limm→∞

∑
n≥m P (En) = 0.
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3 Random Variables

Assume that (Ω,F) is a measurable space.

Definition If X : Ω→ R, for A ∈ R let X−1(A) = {ω ∈ Ω : X(ω) ∈ A}. Then X is measurable and a
random variable iff X−1(A) ∈ F for every A ∈ B.

Important properties/results:

1. X−1 preserves all set operations:

X−1(∪nAn) = ∪nX−1(An)

X−1(Ac) = [X−1(A)]c

2. If C ⊂ B and σ(C) = B, then if X−1(A) ∈ F for every A ∈ C ⇒ X−1(B) ∈ F for every B ∈ B.

(that is, if X is “measurable” for all sets in C and C generates B, then X is measurable.)

3. If {X ≤ c} = {ω : X(ω) ≤ c} ∈ F for every c ∈ R, then X is measurable.

Proof. 1. Follows from definitions.
2. Consider L = {A ⊂ R : X−1(A) ∈ F}. Clearly C ⊂ L; moreover, L is a λ-system since

X−1(R) = Ω ∈ F , if A ∈ L ⇒ X−1(A) ∈ F ⇒ X−1(Ac) = [X−1(A)]c ∈ F , and if An ∈ L ⇒ X−1(An) ∈
F ⇒ X−1(∪nAn) = ∪nX−1(An) ∈ F . Thus, by Dynkin’s theorem, σ(C) = B ⊂ L.

3. Use (2) with C = {(−∞, c] : c ∈ R}.

Measurability is preserved under most operations: Suppose Xn are measurable. Then so are:

1. X1 +X2

2. X1 ·X2

3. αX

4. Compositions: i.e. if f : R→ R is continuous, f ◦X is measurable.

5. Limits: supXn, inf Xn, lim inf Xn, lim supXn, limXn (if exists)

Proof. For example, consider supXn, then:
(supXn)−1((−∞, c]) = {ω : supXn(ω) ≤ c} = ∩n{ω : Xn(ω) ≤ c} ∈ F .

Definition If Xn is a collection of RVs on Ω, then the σ-algebra generated by Xn, denoted σ(Xn)
is the smallest σ-algebra F such that every Xn is measurable in F .

(For single RV, σ(X) = {X−1(B) : B ∈ B} = σ
(
{X−1((−∞, x]) : x ∈ R}

)
= σ({[X ≤ x] : x ∈ R}).)

Definition Similarly, the π-system generated by X is defined as:

π(X) = {X−1((−∞, x]) : x ∈ R} = X−1(π(R))

Definition If X is an RV on (Ω,F , P ), then the law of X, denoted LX , is defined on B by:

LX = P ◦X−1

Note that LX is a probability measure on (R,B). Also, since π(R) = {(−∞, c] : c ∈ R} generates
B, we have LX completely determined by FX on π(R), or the distribution function of X, defined as:

FX(c) = LX((−∞, c]) = P
(
X−1((−∞, c])

)
= P ({ω : X(ω) ≤ c})

Main properties of distribution functions:

1. Monotone: F is monotonically increasing (x ≤ y ⇒ F (x) ≤ F (y))

2. Limits: limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

3. Right-continuity: limx→x−
0
F (x) = F (x0)
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4 Independence

The “naive” definition of independence for events is that A,B are independent iff P (A∩B) = P (A)P (B).
There are more powerful (yet in a sense equivalent) definitions generalizing to σ-algebras that allow us
to consider independent RVs formally. It turns out that the “π-system lemma” (i.e. Dynkin) allows us
again to deal only with π-systems rather than σ-algebras in their entirety, which leads to the fact that
X,Y are independent if FX,Y (x, y) = FX(x)FY (y).

Definition (Independent σ-Algebras) Sub-σ-algebras Gn of F are independent iff for every finite
set of distinct indices i1, . . . , in, with Gik ∈ Gik :

P (Gi1 ∩ · · · ∩Gin) = P (Gi1) · · ·P (Gin)

Definition (Independent RVs) RVs Xn are independent iff σ(Xn) are independent.

Definition (Independent Events) Events En ∈ F are independent iff σ(En) = {∅, En, Ecn,Ω} are
independent.

(Note: this is equivalent to the indicator RVs IEn being independent as per independent RVs definition.)

Lemma 4.1 (π-System Lemma) Let G,H be sub-σ-algebras of F and I,J be π-systems s.t. σ(I) = G
and σ(J ) = H. Then:

I,J independent ⇔ G,H independent

Independence of the underlying π-systems is equivalent to independence of the generated σ-algebras.

Proof. Fix I ∈ I and consider the measures µ1 : H 7→ P (I ∩H) and µ2 : H 7→ P (I)P (H) (they are
measures because: µi(∅) = 0; µi(∪Hn) =

∑
µi(Hn) in both cases). Then µ1 = µ2 on J , and so they

agree on σ(J ) = H (by Dynkin). Now fix H ∈ H and do the same for any G; i.e. µ1 : G 7→ P (G ∩H)
and µ2 : G 7→ P (G)P (H); they agree on I, so they also agree on σ(I) = G, and P (G∩H) = P (G)P (H)
for every G ∈ G, H ∈ H.

Main example. Suppose that X,Y are RVs on Ω and:

P (X ≤ x, Y ≤ y) = P (X ≤ x) · P (Y ≤ y)

Then the π-systems: π(X) = {X−1((−∞, x])} and π(Y ) = {Y −1((∞, y])} are independent, which im-
plies that σ(X) and σ(Y ) are independent, and so X,Y are independent.

Lemma 4.2 (Reverse Borel-Cantelli) If En ∈ F and En are independent, then:

∞∑
n=1

P (En) =∞⇒ P (En, i.o.) = 1

Important result: If 0 ≤ pn ≤ 1 and
∑∞
n=1 pn =∞, then

∏∞
n=1(1− pn) = 0.

Proof (Borel-Cantelli). P ([En, i.o.]
c) = P (lim inf Ecn) =↑ limm→∞ P (∩n≥mEcn) =↑ limm→∞

∏∞
n=m[1−

P (En)]. Moreover,
∑∞
n=1 P (En) = ∞ ⇒

∑∞
n=m P (En) = ∞ for any finite m (otherwise, sum of finite

probabilities is infinite, which is not possible). Thus, by the result above,
∏∞
n=m[1−P (En)] = 0, and so

P ([En, i.o.]
c) =↑ limm→∞

∏∞
n=m[1− P (En)] = 0.
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5 Integration + Expectation

The basic construction of the Lebesgue integral is fairly standardized across most texts, and we follow the
standard procedure of defining integrals for: 1) simple functions; 2) nonnegative measurable functions;
3) general measurable functions.

(In measure theory, there is often a step between 1-2 on for bounded nonnegative measurable functions
on sets of finite measure, but note that the latter condition is unnecessary in probability theory because
our entire space is bounded in measure by 1, and the former condition is sidestepped by approximating
using lower Lebesgue integrals.)1

5.1 Simple Functions

X : Ω→ R is simple if it takes only a finite number of values. If so, it can be written as:

X(ω) =

k∑
i=1

ai1Ai(ω)

i.e. as a sum of indicators with weights ai, the values that X can take on.

Theorem 5.1 (Simple Approximation) X : Ω→∞ is nonnegative and measurable iff there exist simple
functions Xn s.t. Xn ↑ X. (i.e. Xn → X pointwise, Xn are increasing, and Xn ≤ X for every n)

Important properties:

• Simple functions form a vector space; αX and X + Y are also simple.

• Products of simple functions are also simple. (XY =
∑
i,j aibjIAi∩Bj )

• Max/min of simple functions are also simple.

Definition (Integral of Simple Function) The integral of simple function X =
∑k
i=1 ai1Ai over Ω with

measure P is defined as:

E[X] =

∫
XdP =

k∑
i=1

aiP (Ai)

Important properties:

• Linearity : E[αX + βY ] = αE[X] + βE[Y ]

• Monotonicity : X ≤ Y ⇒ E[X] ≤ E[Y ]

• Continuity : Xn ↑ X ⇒ E[Xn] ↑ E[X] and Xn ↓ X ⇒ E[Xn] ↓ E[X]

5.2 Nonnegative Measurable Functions

Definition (Integral of Nonnegative Function) Let X be a nonnegative RV, and define:

E[X] =

∫
XdP = sup

{∫
XndP : Xn simple , Xn ≤ X

}
If we let S(f) = {nonnegative, simple φn s.t. φn ≤ f}, then we can define:∫

fdµ = sup
φ∈S(f)

∫
φdµ

where
∫
φdµ =

∑n
i=1 aiP (Ai).

1I think D. Williams’ construction of the integral in §5 is by far the cleanest and most elegant, with regard to probability
theory. To achieve this elegance, Williams devotes a chapter to integration alone, basically using the language of standard
measure theory, and takes up the translation to expectations in the next chapter. I attempt to follow his construction, but
to use probabilistic language from the get-go.
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Theorem 5.2 Monotone Convergence Theorem (MCT). If Xn are nonnegative, s.t. Xn ↑ X a.s.:

E[Xn] ↑ E[X]

or in integral notation: ∫
XdP =

∫ [
lim
n→∞

Xn

]
dP = lim

n→∞

∫
XndP

Generally, the way a proof regarding integrals works is:

1. Prove it for the case of a simple function

2. Extend it to nonnegative functions by using MCT

3. Extend it to general functions using linearity (next section)

which is why the Monotone Convergence Theorem plays such a large role.

Fatou’s Lemma is easily provable using the MCT, and in turn can be used to prove the Dominated
Convergence Theorem (DCT) in the next section.

Lemma 5.3 (Fatou Lemmas)

1. If Xn are nonnegative, then: E[lim inf Xn] ≤ lim inf E[Xn]

2. If Xn are nonnegative and Xn ≤ Y for every n with E[Y ] <∞, then: E[lim supXn] ≥ lim supE[Xn]

Proof. 1. Note that lim inf Xn = limm→∞[infn≥mXn] where the limit is monotonically increasing.
Thus, we can apply MCT to obtain: E[lim inf Xn] = limm→∞E[infn≥mXn]. But Xk ≥ infn≥mXn for
any k ≥ m, so E[Xk] ≥ E[infn≥mXn] for all k ≥ m and so infn≥mE[Xn] ≥ E[infn≥mXn]. Thus, in the
previous expression, limm→∞E[infn≥mXn] ≤ limm→∞ infn≥mE[Xn] = lim inf E[Xn].

2. Note that Y −Xn are nonnegative; thus, E[lim inf(Y −Xn)] = E[Y ]−E[lim supXn] ≤ lim inf E[Y −
Xn] = E[Y ] − lim supE[Xn] from (1), so E[lim supXn] ≥ lim supE[Xn]. (Directly is more difficult
because the supXn are decreasing, not increasing, so MCT can’t be directly applied.)

5.3 General Measurable Functions

Integrable: In passing from nonnegative to general functions, we require integrability, that is, if
X+ = max(X, 0) and X− = max(−X, 0), then X = X+ −X−, and |X| = X+ +X−. X is integrable iff
E|X| =

∫
|X|dP =

∫
X+dP+

∫
X−dP <∞. (Note this is well-defined since both parts are nonnegative.)

Alternatively, we can write A+ = {ω : X(ω) ≥ 0} and A− = {ω : X(ω) < 0} and let X+ = X · 1A+

and X− = −X · 1A− .

We also note that X is integrable ⇔ X ∈ L1(Ω,F , P )

Definition (Integral of General Function) For integrable, measurable X : Ω→ R, define:

E[X] =

∫
XdP =

∫
X+dP −

∫
X−dP

Theorem 5.4 Dominated Convergence Theorem (DCT). If Xn, X are measurable s.t. Xn → X,
and Xn are dominated by Y ∈ L1(Ω,F , P )+:

|Xn(ω)| ≤ Y (ω) ∀ω ∈ Ω,∀n

then X is integrable, and:
E[Xn]→ E[X]

in other words, ∫
XdP =

∫ [
lim
n→∞

Xn

]
dP = lim

n→∞

∫
XndP

More generally, we have limn→∞
∫
|Xn −X|dP = 0, also denoted as Xn → X in L1.
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5.4 Properties of the Integral

These properties hold for the general case, and are proved using the ‘standard machine’ of starting from
simple functions, using MCT to the nonnegative functions, and linearity to the general case.

1. E[1B ] = P (B)

2. X ≥ 0⇒ E[X] ≥ 0 and X = 0 a.s. ⇒ E[X] = 0

3. Monotonicity: X ≤ Y a.s. ⇒ E[X] ≤ E[Y ]

4. Linearity: E[aX + bY ] = aE[X] + bE[Y ]

5. MCT: 0 ≤ Xn ↑ X, a.s.⇒ E[Xn] ↑ E[X]

6. X ≥ 0 a.s. and E[X] = 0⇒ X = 0 a.s.
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6 Characteristic + Generating Functions

Recall: φX(t) = E[eitX ] (inverse Fourier) and MX(t) = E[etX ] (inverse Laplace)

6.1 Characteristic Functions + Applications

Important properties :

• ∂
∂tφX(t)|t=0 = iE[X]

• In general: if E|Xk| <∞, then:

φX(t) =

k∑
n=1

E[Xn]

n!
(it)n + o(tk)

(i.e. use Taylor series; limt→0 o(t
k)/tk = 0)

• Corollary: φ(k)(0) = ikE[Xk]

• If X ⊥ Y , then φX+Y (t) = φX(t)φY (t)

Importantly, if Xn are i.i.d, then: φSn(t) = [φXn(t)]n

• If Y = aX + b then φY (t) = eitbφX(at)

• Inversion formula: fX(x) = 1
2π

∫∞
−∞ e−itxφX(t)dt

Applications :

• Proof of CLT.

• If φX(t) = φY (t), then X ∼ Y .

• Important CFs: 1) Exponential: φ(t) = λ
λ−it ; 2) Normal: φ(t) = eiµt−

1
2σ

2t2

6.2 Moment Generating Functions + Applications

MX(t) = E[etX ], and the domain of MX is Dx = {t|MX(t) <∞}

Important properties :

• Moment generation:
d

dt
MX(t)|t=0 = E[X]

M
(k)
X (0) = E[Xk]

• Just as with characteristic functions, if Xn are i.i.d., then MSn(t) = [MXn(t)]n

• Inversion: If MX(t) = MY (t) <∞ for every t ∈ [−a, a], then X ∼ Y . (FX = FY )

• MX(t) = E[etX ] =
∫∞

0
P (etX > s)ds

(More generally, for nonnegative X, E[X] =
∫∞

0
P (X > x)dx)

• If Y = aX +B, then MY (t) = etbMX(at)

Applications :

• Mainly for generating moments using the above formula (esp. mean)

• Convolutions of i.i.d. RVs

• Showing that two RVs share the same distribution (i.e. show that MX(t) = MY (t) for all
t ∈ [−a, a])

6.3 Probability Generating Functions

gX(t) = E[tX ], useful for discrete random variables.
This is because if X ∼ pX(k) = P (X = k), and if X > 0, then:

gX(k) =

∞∑
k=1

kmpX(k)

i.e. g
(m)
X (0) = m!pX(m)

Thus, we can use gX to derive the PMF of any positive discrete RV.
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7 Convergence

7.1 Types of Convergence

Almost Surely (a.s.) Essentially the equivalent of pointwise convergence except can fail on sets of
measure/probability zero.

Definition Xn
a.s.−−→ X if there exists measurable A ⊂ Ω such that:

1. limn→∞Xn(ω) = X(ω) for every ω ∈ A (i.e. |Xn(ω)−X(ω)| < ε for all n ≥ N)

2. P (A) = 1

Basically, Xn
a.s.−−→ X iff P (lim |Xn −X| < ε) = 1 (for every ε)

• Every Xn needs to be defined on same Ω.

• Implies: 1) i.p.; 2) in distribution; 3) φXn(t)→ φX(t)

• Does NOT imply E[Xn] → E[X] (i.e. consider Ω = [0, 1] and Xn(ω) = n if ω ≤ 1/n and 0
otherwise; then E[Xn] = 1 for all n but E[X] = 0)

Lemma 7.1 (Useful Lemma) Xn
a.s.−−→ X iff P (|Xn −X| > ε, i.o.) = 0 for every ε > 0.

Proof. Let A = {ω : Xn(ω)→ X(ω)} = {ω : ∀ε∃Ns.t.∀n ≥ N |Xn(ω)−X(ω)| < ε} Thus, Ac = {ω :
∃ε,∀N∃n ≥ N, |Xn(ω)−X(ω)| ≥ ε}. But this is exactly ∩N ∪n≥N {ω : ∃ε, |Xn(ω)−X(ω)| ≥ ε}.
Suppose that P (|Xn−X| > ε, i.o.) = 0 for every ε > 0. Then P (∩N ∪n≥N {ω : |Xn(ω)−X(ω)| ≥ ε}) =
0 for every ε and P (∩N ∪n≥N {ω : ∃ε, |Xn(ω)−X(ω)| ≥ ε}) ≤ P (∪k ∩N ∪n≥N{ω : |Xn(ω)−X(ω)| ≥ 1/k}) =
0, so P (Ac) = 0 and Xn → a.s.X. Supposing the converse, P (A) = 1 ⇒ P (Ac) = 0 so
P (∩N ∪n≥N {ω : |Xn(ω)−X(ω)| ≥ ε}) = 0 for every ε > 0, and P (|Xn −X| > ε, i.o) = 0.

In Probability (i.p.) Definition Xn
i.p.−−→ X if limn→∞ P (|Xn −X| ≥ ε) = 0.

Note that this is exactly: limP (|Xn −X| < ε) = 1

The distinction with a.s. convergence is that: if Xn
a.s.−−→ X, then almost every ω is mapped

to Xn(ω) that converges pointwise to X(ω); if Xn
i.p−−→ X, then the values of the probability

P (|Xn −X| < ε) converge to 1. This does not necessarily mean that there exists some set A ⊂ Ω
such that P (A) = 1 and Xn(ω)→ X(ω) on that set!

Main Example: a.s. 6= i.p. Let Xn =

{
1 with probability 1/n
0 otherwise

, and suppose Xn are indepen-

dent. Then Xn
i.p.−−→ 0, since P (|Xn| > ε) = 1/n → 0. But

∑
n = 1∞P (Xn = 1) =

∑∞
n=1

1
n = ∞

so by Borel-Cantelli, P (Xn = 1, i.o.) = 1, and so Xn(ω) 9 0 for almost surely all ω.

i.p. ⇒ a.s. for Subsequences! If Xn
i.p.−−→ X, then we can find subsequence nk such that

Xnk
a.s.−−→ X! (for above example, let nk = k2 so that

∑
k P (Xnk = 1) <∞⇒ P (Xnk = 1, i.o.) = 0)

(Proof. Because of i.p. convergence, for every ε = 1/k, we can find nk such that P (|Xnk −X| ≥
1/k) < 1/2k. But then

∑
k P (|Xnk − X| ≥ 1/k) <

∑
k 1/2k = 1 < ∞, so by Borel-Cantelli

P (|Xnk −X| ≥ 1/k, i.o.) = 0⇒ P (|Xnk −X| < 1/k, ev.) = 1. So for almost every ω, there is some

K(ω) such that if k > K(ω), then |Xnk(ω)−X(ω)| ≤ 1/k. But this implies Xnk
a.s.−−→ X.)

In Distribution Xn
d−→ X if limn→∞ Fn(x) = F (x) at every x such that F is continuous.

d. ⇒ a.s. Transformed! Although convergence in distribution is far and away the weakest form
of convergence (since it doesn’t require Xn to be in the same space, and doesn’t really even say
anything about the RVs themselves), we can find Yn distributed identically to Xn such that they
converge a.s. to Y , distributed identically to X.

Theorem 7.2 (Skorohod Representation) If Xn ∼ Fn and X ∼ F , s.t. Xn
d−→ X, then ∃ (Ω,F ,P)

and Yn, Y such that:

11



1. Yn ∼ Xn (Fn) and Y ∼ Y (F )

2. Yn
a.s.−−→ Y

Proof. Let Ω = [0, 1], F = B, and P = λ (Lebesgue measure). Define Yn(ω) = inf{x : ω ≤
Fn(x)}, Y (ω) = inf{x : ω ≤ F (x)} (basically an inverse; just use inf for discrete case with discon-
tinuous CDF). Note that ω ≤ F (x)⇔ Y (ω) ≤ x.

Clearly (a) is satisfied since P(Yn ≤ y) = P(ω ≤ F (y)) = λ([0, F (y)]) = F (y) by definition of
Lebesgue measure.

For (b), for arbitrary ε > 0 and ω ∈ Ω, pick x where F (x) is continuous such that Y (ω)− ε < x <
Y (ω). Then x < Y (ω)⇒ F (x) < ω, but Fn(x)→ F (x), so for large enough n, Fn(x) < ω, and so
x < Yn(ω) for sufficiently large n. Thus, Y (ω) − ε < x < Yn(ω); by letting n → ∞, we have that
lim infn→∞ Yn(ω) ≥ x > Y (ω)− ε; since ε was arbitrary, let ε ↓ 0 and so lim infn→∞ Yn(ω) ≥ Y (ω).

Similarly, pick some ω′ > ω in [0, 1], and pick continuous point x′ such that Y (ω′) < x′ < Y (ω′)+ε.
Again, this implies ω′ < F (x′)⇒ ω′ < Fn(x′) for sufficiently large n, and so Yn(ω′) < x′ < Y (ω′)+ε
for large enough n; then again taking limits, lim supn→∞ Yn(ω′) ≤ Y (ω′). Since Y (ω′) ↓ Y (ω) as
ω′ ↓ ω where ω is a point of continuity of Y , this implies that limn→∞ Yn(ω) = Y (ω).

Since the points of discontinuity of Y form a countable set (because Y is monotone non-decreasing),
Yn → Y a.s.

d. ⇒ i.p. for Constants If Xn
d−→ c for constant c, then Xn

i.p.−−→ c as well.

(Proof. Suppose Xn
d−→ c for constant c; then limn→∞ P (Xn ≤ c − ε) = 0 while limn→∞ P (Xn ≤

c + ε) = 1. Then, limn→∞ P (|Xn − c| ≥ ε) ≤ limn→∞[P (Xn ≤ c − ε) + P (Xn ≥ c + ε)] = 0 so

Xn
i.p.−−→ c.)

Odd Properties/Examples for convergence in distribution:

• Convergence of Constants: Let Xn = 1/n,X = 0 (degenerate RVs). Then FXn(0) = P (Xn ≤
0) = 0 for every n but FX(0) = 1. But because FX is not continuous at 0, Xn

d−→ X still!

(More generally: if an → a and Xn = an, X = a, then Xn
d−→ X)

• Convergence in Distribution without Convergence of RVs: Let Y have PDF symmetric about
0, and Xn = (−1)nY . Then clearly Xn oscillates and never converges for almost all given ω

(since P (Y = 0) = 0 for continuous Y ). But FXn = FY for every n, so Xn
d−→ Y !

• Convergence of Discrete to Continuous: Let Yn ∼ Unif{1, . . . , n}, and Xn = Yn/n. Then

Xn
d−→ X ∼ Unif[0, 1].

• Convergence of Continuous to Discrete: Xn ∼ Unif[0, 1/n] then Xn
d−→ 0, which is degenerate

discrete RV.

• Convergence in Distribution but not PDF : LetAn = ∪n−1
k=0

[
k
n ,

k+1/2
n

)
, and fXn(t) =

{
2 if t ∈ An
0 otherwise

.

Then for every t ∈ [0, 1], we have bntcn ≤ FXn(t) ≤ bnt+1c
n so that limn→∞ FXn(t) = t and

Xn
d−→ X ∼ Unif[0, 1]. However, |fXn(t) − fX(t)| = 1 for every n and t, so the PDFs don’t

converge.

• Convergence in Distribution ⇒ in PMF: IF X,Xn are discrete, and Xn
d−→ X then pXn(k)→

pX(k).

In Characteristic Function That is, φXn(t)→ φX(t) pointwise.

Theorem 7.3 (Continuity of Inverse Transforms) Suppose that Xn have characteristic functions
φXn , and for every t, limn→∞ φXn(t) = φ(t) exists. Then either:

1. φ is discontinuous at 0 and Xn do not converge in distribution.

2. ∃ RV X such that φX = φ, and Xn
d−→ X.

12



Basically, if φXn(t)→ φX(t) for every t, then Xn
d−→ X.

Example: Exponential Distribution. Let Xn ∼ Expo(λn); phiXn(t) = λn
λn−it .

1) If λn → 0, then we see that limn→∞φXn(t) =

{
1 if t = 0
0 if t 6= 0

.Thus, φ is discontinuous at 0,

and Xn do not converge.

2) If λn → λ > 0, then φXn → φ = λ
λ−it , so Xn

d−→ X ∼ Expo(λ).

13



8 Limit Theorems

8.1 Inequalities

In general, inequalities are extremely useful for proving theorems (i.e. Chebyshev for Strong Law). Two
main kinds: 1) expectation inequalities; 2) tail probability inequalities. Markov’s inequality links both!

Important expectation inequalities:

Jensen Suppose that g : G→ R is convex on G ⊂ R and X is RV in L1 and P (X ∈ G) = 1. Then:

Eg(X) ≥ g(EX)

Cauchy-Schwarz If X,Y ∈ L2, then:

|E(XY )| ≤ E|XY | ≤
√
E(X2) ·

√
E(Y 2)

(Generally, we care that [E(XY )]2 ≤ E(X2)E(Y 2).)

Important tail probability inequalities:

Markov If X is nonnegative RV, then:

P (X ≥ a) ≤ E(X)

a

(Again, we often use |X| ∈ L1 as our nonnegative RV.)

More generally, we have:

P (X ≥ a) ≤ Eg(X)

g(a)

Chebyshev P (|X − E(X)| ≥ a) ≤ var(X)
a2

Chernoff P (X ≥ a) ≤ MX(t)
eta for all t > 0 and a.

(Often used with X = Sn =
∑n
i=1Xi where Xi are i.i.d.; then we have P (Sn ≥ na) ≤ [M(t)]n

enta . We

then minimize over t; i.e. P (Sn ≥ na) ≤ e−nφ(a) where φ(a) = supt≥0[ta− logM(t)].)

8.2 Weak Law of Large Numbers

Theorem 8.1 If Xn are i.i.d. and E|Xn| = µ <∞ with Sn =
∑n
i=1Xi, then:

Sn
n

i.p.−−→ µ

Proof (Finite Variance). By Chebyshev, P
(∣∣Sn

n − µ
∣∣ ≥ ε) ≤ var(Sn/n)

ε2 = nvar(Xn)
n2ε2 = σ2

nε2 → 0.

Proof (General Case). Let φn = φSn/n. Then φn(t) = E[eitSn/n] = E[ei(t/n)Xn ]n = [φXn(t/n)]n =(
1 + iµt

n + o(t/n)
)n

. Thus, limn→∞ φn(t) = eiµt. But eiµt is constant RV at µ, so Sn/n
d−→ µ. If RV

converges to constant in distribution, it also converges i.p.
(Note: Proof in finite variance case is literally trivial from Chebyshev!)

8.3 Strong Law of Large Numbers

Theorem 8.2 If Xn are i.i.d. and E|Xn| = µ <∞ with Sn =
∑n
i=1Xi, then:

Sn
n

a.s.−−→ µ

(Note: the only difference between the weak and strong laws is i.p. vs. a.s. convergence.)
The following lemma proves a useful method for showing a.s. convergence. (Recall the other way:

showing P (|Xn −X| > ε, i.o.) = 0.)

Lemma 8.3 For any sequence of RVs Xn, if
∑
nE|Xn|s <∞ for s > 0, then Xn

a.s.−−→ 0.
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Proof. By MCT, E[
∑∞
n=1 |Xn|s] = limk→∞E[

∑k
n=1 |Xn|s] = limk→∞

∑k
n=1E|Xn|s =

∑∞
n=1E|Xn|s <

∞. Thus,
∑∞
n=1 |Xn|s is finite a.s., so |Xn|s

a.s.−−→ 0, which implies Xn
a.s.−−→ 0. (Otherwise, say

Xn(ω)→ c 6= 0, |Xn(ω)|s → |c|s 6= 0 by continuity.)

Proof of SLLN (Finite Variance). For nonnegative Xn, suppose E[X2
n] <∞; then E

[(
Sn
n − µ

)2]
=

1
n2 ·nvar(Xn) = var(Xn)

n . Consider ni = i2, so that
∑∞
i=1E

[(
Si2
i2 − µ

)2
]

=
∑∞
i=1

var(Xi)
i2 = var(Xi)

π2

6 <

∞. Thus, (Si2/i
2 − µ)2 a.s.−−→ 0 and so Si2/i

2 a.s.−−→ µ. Now we fill in the gaps: consider any n s.t. i2 ≤
n < (i + 1)2. Then Si2 ≤ Sn < S(i+1)2 ; Thus,

Si2
(i+1)2 ≤

Sn
n ≤

S(i+1)2

i2 ⇒ i2

(i+1)2
Si2
i2 ≤

Sn
n ≤

(i+1)2

i2
S(i+1)2

(i+1)2

But since (i+ 1)/i→ 1 and Si2i
2 a.s.−−→ µ on both sides, we must have Sn/n

a.s.−−→ µ as well.
Now for general Xn = X+

n − X−n , we see that E[X2
n] < ∞ ⇒ E[(X+

n )2], E[(X−n )2] < ∞ since
X+
n , X

−
n ≤ |Xn| so (X+

n )2, (X−n )2 ≤ |Xn|2. But this implies that we can apply SLLN for eachX+
n , X

−
n and

see that 1
n

∑n
i=1X

+
i

a.s.−−→ E[X+
n ] and 1

n

∑n
i=1X

−
i

a.s.−−→ E[X−n ]. But this means that limn→∞ Sn(ω)/n =

limn→∞
[

1
n

∑n
i=1X

+
n − 1

n

∑n
i=1X

−
n

]
= E[X+

n ]− E[X−n ] = E[Xn] for almost all ω, so Sn/n
a.s.−−→ µ.

8.4 Central Limit Theorem

Theorem 8.4 If Xn are i.i.d with mean µ <∞, variance σ2 <∞, and Sn =
∑n
i=1Xi, then:

Sn/n− µ
σ/
√
n

d−→ N (0, 1)

Proof. Consider Yn = 1√
nσ

(Xn − µ). Then E[Yn] = 0 and var(Yn) = 1/n, so φYn(t) = 1− t2

2n + o(t2).

Moreover, if Z = Sn/n−µ
σ/
√
n

, then φZ(t) = [φYn(t)]n =
[
1− t2

2n + o(t2)
]n
→ e−t

2/2 so that Z
d−→ N (0, 1).

Corollary 8.5 In the more general case, where each X
(n)
1 , . . . , X

(n)
n are i.i.d. with µn, σ

2
n, but samples

can differ in distribution (and mean/variance), s.t. µn → µ and σn → σ, then letting Sn =
∑n
i=1X

(n)
i :

Sn/n− µn
σn/
√
n

d−→ N (0, 1)

15



9 Stochastic Processes

9.1 Redux: PGFs + Convolutions

Recall that the probability generating function (PGF) of a discrete RV X is:

G(s) = E[sX ] =
∑
i

sipX(i)

Important properties:

1. Convolutions: If Z = X + Y , and X ⊥ Y then: GZ(s) = GX(s)GY (s)

2. Moments: E[X] = G′(1) and more generally,

E[X(X − 1) · · · (X − k + 1)] = G(k)(1)

3. Independence: X ⊥ Y iff GX+Y (s) = GX(s)GY (s)

4. Compounding: If Xn are i.i.d. with PGF GX and N ≥ 0 is independent of Xn with PGF GN ,
then S = X1 + · · ·+XN has PGF:

GS(s) = GN (GX(s))

Proof. 1. Suppose X,Y take values in nonnegative integers. Then: GZ(s) =
∑∞
n=0 s

npZ(s) =∑∞
n=0 s

n
∑n
k=0 pZ|X(z|k)pX(k) =

∑∞
n=0

∑n
k=0 s

kpX(k)sn−kpY (n−k) =
∑∞
n=0[pX(0)snpY (n)+spX(1)sn−1pY (n−

1) + · · ·+ snpX(n)pY (0)] = pX(0)[pY (0) + spY (1) + · · · ] + spX(1)[pY (0) + spY (1) + · · · ] + · · · =∑∞
k=0 s

kpX(k)
[∑∞

n=k s
n−kpY (n− k)

]
=
∑∞
k=0 s

kpX(k)GY (s) = GX(s)GY (s).
2. G′(s) =

∑∞
n=0 ns

n−1pX(n)⇒ G′(1) =
∑∞
n=0 npX(n) = E[X].

3. Similar to 1; to show independence, equate coefficients of si1s
j
2.

4. By conditional expectation, E[sX1+···+XN ] = E[E[sX1+···+Xn |N ]] = E[[GX(s)]N ] = GN (GX(s))

9.2 Random Walks

Definition If Xn i.i.d. with Xn = 1 with probability p, Xn = −1 otherwise, then a random walk is
defined by the sequence {Sn : n ∈ N} with:

Sn =

n∑
i=1

Xi

An important property of a random walk is the probability that it returns to the origin. Let p0(n) =
P (Sn = 0) be probability that random walk is at origin after n steps; f0(n) = P (S1 6= 0, . . . , Sn−1 6=
0, Sn = 0) be the probability that the first return to the origin occurs at time n. Then define:

P0(s) =

∞∑
n=0

snp0(n) and F0(s) =

∞∑
n=1

snf0(n)

(although p0(n) is not a probability mass function). Then F0(s) is the PGF of T0, the RV of the time of
first return to the origin (so that E[T0] = F0(1)).

Important results:

1. P0(s) = 1 + P0(s)F0(s)

2. P0(s) = (1− 4p(1− p)s2)−1/2

3. F0(s) = 1− (1− 4p(1− p)s2)1/2
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Proof. 1. Since T0 = k form a disjoint partition, we have p0(n) = P (Sn = 0) =
∑n
k=1 P (Sn =

0|T0 = k)P (T0 = k). But P (Sn = 0|T0 = k) = P (Sn−k = 0) = p0(n − k) and P (T0 = k) = f0(k),
so that: p0(n) =

∑n
k=1 p0(n − k)f0(k) ⇒ P0(s) =

∑∞
n=0 s

np0(n) =
∑∞
n=0 s

n
∑n
k=1 p0(n − k)f0(k) =

1 +
∑∞
k=1

∑∞
n=k s

n−kp0(n− k)skf0(k) = 1 + P0(s)F0(s).
2. Note that Sn = 0 can only occur for even n, and then has probability

(
n
n/2

)
pn/2(1− p)n/2.

3. Use (2) in result (1).

Corollary 1: As a result, the probability that the particle ever returns to the origin is given by:

∞∑
n=1

f0(n) = F0(1) = 1− |p− (1− p)|

that is, the origin is persistent iff p = 1/2. (Otherwise it is biased to one side and can never return.)
Corollary 2: The expected time to first return is given by:

E[T0] = F ′0(1) =
4p(1− p)√

1− 4p(1− p)

so that if p = 1/2, as necessary for certain eventual return, the expected time until first return becomes
∞.

9.3 Branching Processes

We consider a process where Z0 = 1, and each organism has i.i.d. distributed offspring with PMF p
and PGF G. Let Zn denote the size of the nth generation, and let Gn be the PGF of Zn. Then, by
compounding:

Gn(s) = G(n)(s) = G(G(· · ·G(s) · · · ))

In general Gn(s) tells us everything but can be very hard to compute. Consequently, we have the
following result: suppose that E[Z1] = µ and var(Z1) = σ2. Then:

• Mean: E[Zn] = µn

• Variance: var(Zn) =

{
nσ2 if µ = 1

σ2(µn−1)µn−1

µ−1 if µ 6= 1

Proof. Using Gn(S) = G(Gn−1(s)) ⇒ G′n(s) = G′(Gn−1(s))G′n−1(s), at s = 1 we have Gn−1(1) =
1, G′n(1) = E[Zn], G′(1) = µ,G′n−1(1) = E[Zn−1], so E[Zn] = µE[Zn−1], so by induction E[Zn] = µn.

We can also explore the probability of extinction; that is P (Zn > 0). Since Zn takes nonnegative
integer values, we find:

Lemma 9.1 If µ < 1, then Zn
a.s.−−→ 0 and P (Zn > 0) < µn.

Proof. By Markov, P (Zn ≥ 1) ≤ E[Zn] = µn. Since
∑
n µ

n < ∞ since µ < 1, by Borel-Cantelli

P (Zn ≥ 1, i.o.) = 0 and so Zn
a.s.−−→ 0.

9.4 Bernoulli + Poisson Processes

The Poisson process is familiar, but it can be viewed as a continuous generalization of the Bernoulli
process, which occurs at every discrete time point.

Definition If Xn ∼ Bern(p) i.i.d., then they constitute a Bernoulli process with the following prop-
erties:

1. Number of arrivals for any fixed time is Sn = X1 + · · ·+Xn ∼ Bin(n, p)

2. Interarrival times are: Tk = Yk − Yk−1 ∼ Geom(p) + 1 where Yk = min{n|Xn = k}
(Note that Yk ∼ NBin(k, p) + k.)

The Bernoulli process exhibits special structure, which also generalize to the Poisson process:
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1. Stationarity: For every k, (Xn+1, . . . , Xn+k) ∼ (X1, . . . , Xk).

2. Memorylessness: Given values of X1, . . . , Xn, the distribution of Xn+1, Xn+2, . . . does not
change, that is:

P ((Xn+1, Xn+2, . . . ) ∈ A|X1, . . . , Xn) = P ((Xn+1, Xn+2, . . . ) ∈ A) = P ((X1, X2, . . . , ) ∈ A)

(where the last equality follows from stationarity)

3. Strong Memorylessness: Let the stopping time be defined by N if there exists hn s.t. 1(N =
n) = hn(X1, . . . , Xn), i.e. whether N = n occurred is completely determined by X1, . . . , XN .

P ((XN+1, XN+2, . . . ) ∈ A|N = n,X1, . . . , Xn) = P ((Xn+1, Xn+2, . . . ) ∈ A) = P ((X1, X2, . . . , ) ∈ A)

(i.e. if we start watching at some random time N that is determined by the past events X1, . . . , Xn,
then still Bernoulli process.)

4. Merging: If Xn, Yn are independent Bernoulli processes with parameters p, q, then Zn are i.i.d.
Bernoulli (i.e. form a Bernoulli process) with parameter p+ q − pq.

5. Splitting: If Zn is a Bernoulli process with parameter p and each event counts for Xn with
probability q, Yn with probability 1 − q, then Xn ∼ Bern(pq) and Yn ∼ Bern(p(1 − q)) are both
Bernoulli processes (but are dependent).

Definition The collection of RVs {N(t)}, representing the number of arrivals in some time t, form a
Poisson process if:

1. Tk = Yk − Yk−1 ∼ Expo(λ)

2. N(t) ∼ Pois(λt)

(Note that Yk ∼ Γ(k, λ).)

It is also implicitly defined by the properties:

1. Numbers of arrivals in disjoint intervals are independent; that is, if 0 < t1 < t2 < · · · < tk, then
N(t1), N(t2)−N(t1), . . . , N(tk)−N(tk−1) are independent RVs. (i.e. independent trials)

2. Number of arrivals in any interval is proportional to λ and interval length t.
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Useful Formulae + Facts

Exponential Function limn→∞
(
1 + x

n

)n
= ex

More generally, if an → a, then:

lim
n→∞

(
1 +

an
n

)n
= ea

Taylor Series and Approximation g(ε) = g(0) + g′(0)ε+ o(ε) where limε→0
o(ε)
ε = 0

Proving Zero Probability, ev If 0 ≤ pn ≤ 1 and
∑∞
n=1 pn =∞, then

∏∞
n=1(1− pn) = 0.
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Distribution PDF and Support EV, Variance MGF CF/GF

Bernoulli
Bern(p)

P (X = 1) = p

P (X = 0) = q p, pq q + pet (1− p) + ps

Binomial
Bin(n, p)

P (X = k) =
(
n
k

)
pk(1− p)n−k

k ∈ {0, 1, 2, . . . n} np, npq (q + pet)n [(1− p) + ps]n

Geometric
Geom(p)

P (X = k) = qkp

k ∈ {0, 1, 2, . . . } q/p, q/p2 p
1−qet , qe

t < 1 p
1−(1−p)s

Neg. Binom.
NBin(r, p)

P (X = n) =
(
r+n−1
r−1

)
prqn

n ∈ {0, 1, 2, . . . } rq/p, rq/p2 ( p
1−qet )

r, qet < 1
(

p
1−(1−p)s

)r
Hypergeom.

HGeom(w, b, n)

P (X = k) =
(w
k

)( b
n−k

)
/
(w+b
n

)
k ∈ {0, 1, 2, . . . , n}

µ = nw
b+w

w+b−n
w+b−1n

µ
n (1− µ

n ) − −

Poisson
Pois(λ)

P (X = k) = e−λλk

k!

k ∈ {0, 1, 2, . . . } λ, λ eλ(et−1) eλ(s−1)

Uniform
Unif(a, b)

f(x) = 1
b−a

x ∈ (a, b) a+b
2 , (b−a)2

12
etb−eta
t(b−a)

eitb−eita
it(b−a)

Normal
N (µ, σ2)

f(x) = 1
σ
√

2π
e−(x − µ)2/(2σ2)

x ∈ (−∞,∞) µ, σ2 eµt+
1
2σ

2t2 eiµt−
1
2σ

2t2

Exponential
Expo(λ)

f(x) = λe−λx

x ∈ (0,∞) 1/λ, 1/λ2 λ
λ−t , t < λ λ

λ−it

Gamma
Gamma(α, β)

f(x) = βα

Γ(α)x
α−1e−βx

x ∈ (0,∞) α/β, α/β2

(
β
β−t

)α
, t < β

(
β

β−it

)α
Beta

Beta(a, b)

f(x) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1

x ∈ (0, 1)

µ = a
a+b

µ(1−µ)
(a+b+1) − −

Chi-Squared

χ2
n

1
2n/2Γ(n/2)

xn/2−1e−x/2

x ∈ (0, 1) n, 2n

(1− 2t)−n/2

t < 1/2 (1− 2it)−n/2

MVN
N (µ,Σ)

f(x) = (2π)−n/2|Σ|−1

exp
[

1
2 (x− µ)TΣ−1(x− µ)

]
µ,Σ exp(µT t + 1

2tTΣt) exp(iµT t− 1
2tTΣt)

Multinomial
Multk(n, ~p)

P ( ~X = ~n) =
(

n
n1...nk

)
pn1

1 . . . pnkk
n = n1 + n2 + · · ·+ nk

n~p
var(Xi) = npi(1− pi)
Cov(Xi, Xj) = −npipj

(∑k
j=1 pje

tj
)n (∑k

j=1 pje
itj
)n

Cauchy-Schwarz Markov Chebychev Jensen

|E(XY )| ≤
√
E(X2)E(Y 2) P (X ≥ a) ≤ E|X|

a
P (|X − µX | ≥ a) ≤ σ2

X

a2
g convex: E(g(X)) ≥ g(E(X))

g concave: E(g(X)) ≤ g(E(X))
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