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1 Introduction

An oft-overlooked but important aspect of regression analysis is the detection of outliers and influential

observations in the data. Idiosyncrasies in the data can lead to distorted or misleading conclusions when

analyzing only overall summary statistics, such as R2, β̂. In order to combat this issue, a number of diagnostic

tools and methods have been developed for both linear and generalized linear models. This paper outlines

the development of these diagnostics and detection methods and their foundations in the theory of linear

models.

2 Cook’s Distance for Linear Models

2.1 Matrix Inversion Lemma

We first take a brief technical aside to introduce a widely-used lemma and technique for simplifying formulas

after the deletion of an observation, adopting the approach of Hager (1989). The matrix inversion lemma,

also known as the Sherman-Morrison-Woodbury formula, is a method for computing the inverse of a modified

matrix based on the inverses of the original matrix and the modification matrices. In other words, given a

matrix A, we would like to compute the inverse B−1, where B is a modified version of A. For example, the

deletion of an observation leads to a modified matrix that has one row removed, and other cases may arise

in the solution of systems of linear equations for which the coefficient matrix B is a perturbation of a more

convenient matrix A.

The primary result is that when B = A −UV for some matrices U,V, and both A and A −UV are

invertible, then we have:

B−1 = A−1 + A−1U(I−VA−1U)−1VA−1

In particular, note that the computation involves only inverting the original matrix A and products of

A,U,V. Moreover, in deletion diagnostics, we only consider cases in which U is a column vector, denoted

u, and V is a row vector, denoted v. This yields a much simplified version of the formula:

B−1 = A−1 + αA−1uvA−1

in which α = 1/(1 − vA−1u). While Hager (1989) cites the utility of this formula in its ability to update

the inverse matrix when a new observation enters the model matrix, it has found much applicability in

simplifying formulas for the method of deletion diagnostics, as outlined below.
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2.2 Motivation for Cook’s Distance

We follow the standard convention for linear models, where the response variable y = Xβ+ e and e denotes

the residual, with E(e) = 0 and var(e) = σ2I. We have y as an n × 1 vector, X as an n × p full-rank

model matrix, and β as a p × 1 vector of parameters. Correspondingly, the least squares estimates are

β̂ = (XTX)−1XTy, while the hat matrix is H = X(XTX)−1XT .

While not necessary for the development of the metric, we make the normal assumption on y in order to

motivate the formula for Cook’s distance. Thus, assume that y ∼ N(µ, σ2I); then, we have:

β̂ ∼ N(β, σ2(XTX)−1)

since β̂ is a linear function of y. Consequently, we can form a quadratic form using the inverse of the variance

matrix to yield a chi-squared distribution:

(β − β̂)TXTX(β − β̂)

σ2
∼ χ2

p

Similarly, we have 1
σ2 (y−µ̂)T (y−µ̂) = n−p

σ2 s
2 ∼ χ2

n−p. Thus, forming the ratio of two independent chi-squared

distributions (due to the orthogonality of the model and error spaces) over their degrees of freedom:

(β − β̂)TXTX(β − β̂)

ps2
∼ Fp,n−p

which measures the number of residuals that a given µ = Xβ is from the estimate µ̂ = Xβ̂. Thus, it provides

a measure of distance of a modified estimate from the original when the analysis is altered in some fashion,

as in the case when an observation is deleted.

This idea suggests a measure for the degree of influence of an observation; letting β̂(−i) denote the least

squares estimate of β with the ith observation deleted, we define Cook’s distance:

Di ≡
(β̂(−i) − β̂)TXTX(β̂(−i) − β̂)

ps2

Thus, we see that based on the F-statistic for the deviation of the estimated µ̂ from the true value µ under

the normal assumption, Cook’s distance is a natural measure of the distance between the estimated µ̂(−i)

with the ith observation deleted and µ̂ with the full data. Moreover, aside from the scale factor ps2, Di is

simply the Euclidean distance that the fitted values µ̂ “move” when the ith observation is removed.

2.3 Simplification via Leverage Values

As Cook (1977) notes, the utility of the above measure is diminished by the fact that evaluating the diagnostic

for all n observations involves computing n+ 1 regressions for β̂, β̂(−1), . . . , β̂(−n), which can incur significant

computational costs and time. Fortunately, by application of the matrix inversion lemma noted above, we
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can provide a substantial simplification of Cook’s distance into a more computationally tractable as well as

intuitive form.

To do so, following the proof of the main result in Beckman and Trussell (1974), we first note that:

XTX = XT
(−i)X(−i) + xix

T
i

since we have [XTX]jk = ([X]j)
T [X]k = ([X(−i)]j)

T [X(−i)]k + [xxT ]jk, where [A]jk denotes the jk element

of the matrix A and [A]j denotes the jth column of the matrix A. Moreover, XT = [XT
(−i),xi], where for

simplicity of exposition we assume that i is the last observation (but can be placed among any of the rows).

Thus, using the formula given by the matrix inversion lemma for the case of modification by a single row

and column vector:

β̂ = (XTX)−1XT y

= [XT
(−i)X(−i) + xix

T
i ]−1XTy

=

[
(XT

(−i)X(−i))
−1 − 1

1 + c
(XT

(−i)X(−i))
−1xix

T
i (XT

(−i)X(−i))
−1

]
XTy

=

[
I− 1

1 + c
(XT

(−i)X(−i))
−1xix

T
i

]
β̂(−i) +

1

1 + c
(XT

(−i)X(−i))
−1xiyi

where c = xTi (XT
(−i)X(−i))

−1xi is a scalar. Thus, multiplying by xTi and some simplification yields:

xTi β̂ =
1

1 + c
xTi β̂(−i) +

c

1 + c
yi

which, after rearrangement, can be written as:

yi − xTi β̂ =
1

1 + c

(
yi − xTi β̂(−i)

)
Finally, rearranging terms and using a generalized left inverse yields the desired difference in estimates term:

β̂ − β̂(−i) = (XT
(−i)X(−i))

−1xi(yi − xTi β̂)

The matrix inversion lemma again demonstrates its utility in this case, as we can now compute the inverse

(XT
(−i)X(−i))

−1 from the inverse of the original model matrix as follows:

(XT
(−i)X(−i))

−1 = [XTX− xix
T
i ]−1

= (XTX)−1 +
1

1− hii
(XTX)−1xix

T
i (XTX)−1

where hii = [H]ii is the ith diagonal term in the hat matrix H, or the leverage of the ith observation.
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Multiplying on the right by xi yields:

(XT
(−i)X(−i))

−1xi =
(XTX)−1xi

1− hii

Using this expression in our difference in estimates term results in:

β̂ − β̂(−i) =
(XTX)−1xi

1− hii
(yi − xTi β̂)

Thus, we can now substitute this expression in the definition of Cook’s distance given above, yielding:

Di =

(
yi − xTi β̂

s
√

1− hii

)2
hii

p(1− hii)

But noting that the squared term is precisely the ith standardized residual (or sometimes referred to as the

studentized residual), we thus have:

Di = r2i
hii

p(1− hii)

This version of Cook’s distance, in addition to being more computationally tractable, captures the intuition

of the magnitude of values that can result. Prior to Cook’s approach, the standard recommendation was

to use a combination of residual plots (of the ei), standardized residual values (ri), and leverages (hii) to

determine whether an observation was influential for the fit and potentially distorting the estimate. Cook’s

distance evidently combines these separate analyses into a single metric, which can be compared uniformly

across all observations as a scalar.

2.4 Extensions of Cook’s Distance

When conducting tests such as the general linear hypothesis, it is often the case that the quantity of interest

is not β itself, but rather some linear combination(s) of the β. If we are interested in q linear combinations

of β, for example, we can denote the quantities of interest as ψ = Λβ where Λ is a q × p rank q matrix.

We can arrive at a generalization of Cook’s distance for the given matrix Λ by following the same

approach as in the motivation of the original formula. Under the normal assumption, we have ψ ∼
N(Λβ̂, σ2Λ(XTX)−1ΛT ). Thus, the quadratic form

1

σ2
(ψ − ψ̂)T [Λ(XTX)−1Λ]−1(ψ − ψ̂) ∼ χ2

q

since Λ is of rank q; meanwhile, n−pσ2 s
2 ∼ χ2

n−p as before. Thus, forming the ratio over the respective degrees

of freedom:
(ψ − ψ̂)T [Λ(XTX)−1Λ]−1(ψ − ψ̂)

qs2
∼ Fq,n−p
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We therefore define the generalized Cook’s distance to be that ratio with ψ̂(−i) = Λβ̂(−i) denoting the

estimate of the desired quantity under deletion of observation i:

Di(Λ) ≡
(ψ̂(−i) − ψ̂)T [Λ(XTX)−1Λ]−1(ψ̂(−i) − ψ̂)

qs2

While the simplification for the general case is not particularly illuminating, it is useful to consider the

special case in which q = 1; that is, when we are considering a single linear combination of β. This case

is useful because it allows for the consideration of the effect of an observation on a single parameter βi, as

well as the impact on a contrast βi − βj . In this case, we have Λ = λ where λ is a row vector. In this case,

Λ(XTX)−1ΛT = λ(XTX)−1λT ∈ R is a scalar.

Using the fact that:

ψ̂ − ψ̂(−i) = λ(β̂ − β̂(−i)) =
yi − xTi β̂

1− hii
λ(XTX)−1xi

as derived in the simplification of the original Cook’s distance formula, we have:

Di(λ) =
r2i

1− hii
xTi (XTX)−1λTλ(XTX)−1xi

λ(XTX)−1λT

We now note that the correlation between xTi β̂ and λβ̂ is given by the following:

ρ(xTi β̂, λβ̂) =
cov(xTi β̂, λβ̂)√

var(xTi β̂)var(λβ̂)

=
xTi [σ2(XTX)−1]λT√

[σ2xTi (XTX)−1xi] · [σ2λ(XTX)−1λT ]

=
xTi (XTX)−1λT√
hiiλ(XTX)−1λT

Thus, substituting into the expression for Di(λ) and noting that r2i
hii

1−hii
= pDi, we finally obtain:

Di(λ) = pDi · ρ(xTi β̂, λβ̂)2

3 Generalization: Empirical Influence Function

One may consider two potential approaches to further generalize the Cook’s distance metric. The first is

to consider alternative quadratic forms to define the distance measure, rather than the standard covariance

matrix XTX. While this matrix yielded an intuitive interpretation of Cook’s distance as the Euclidean

distance that the fitted values moved when the ith observation was deleted, it may be the case that other

choices for the matrix result in simpler or more readily comparable quadratic forms. The second approach is

to consider deleting more than one observation at a time and formulating metrics for the deletion of subsets
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of observations.

Both of these potential generalizations can be formulated in terms of the empirical influence function, a

special case of the influence function by Hampel (1974), defined for an arbitrary subset of the data A as:

IFA = β̂A − β̂

We can then define a generalized notion of a distance, or location/scale-invariant norm, for the subset A as:

DA(M, c) ≡ (IFA)TM(IFA)

c

for a given matrix M and scale factor c. These parameters, in a sense, may be chosen to reflect the quantities

or changes of interest in the particular analysis. We note that the original Cook’s distance is a special case

of this formula with M = XTX and c = ps2. Moreover, when a single observation i is deleted, we denote

the distance as Di(M, c).

3.1 Generalized Single-Deletion Metrics

Cook and Weisberg (1980) discuss a number of potential alternatives for the choices of M and c, but note that

all choices that yield location- and scale-invariant Di(M, c) provide “approximately the same information.”

However, both the geometric interpretation of the measures as well as their reduced forms vary from the

original metric.

The first alternatives are to consider M = XT
(−i)X(−i) and c = ps2(−i). In a sense, the latter scale factor

corresponds to a ‘Studentized’ version of the metric, in the sense of Studentized residuals, in which the

sample variance is estimated without the ith observation. Table 1 provides a number of possible alternative

metrics and their reduced forms, based on the assumption of normality regarding the response variable.

Given this assumption, we note that:

Fi ≡ r2i
n− p− 1

n− p− r2i
∼ F1,n−p−1

assuming that the correct model is given by y = Xβ + ε.

M c Reduced Form

XTX ps2(−i)
n−p
p Fi

hii

1−hii

XT
(−i)X(−i) ps2 r2i

hii

p

XT
(−i)X(−i) ps2(−i) Fi

hii

p

[diag(XTX)−1]−1 ps2(−i)
n−p
p Fi

xT
i (XTX)−1M(XTX)−1xi

1−hii

Table 1: Alternative quadratic forms Di(M, c) based on different choices for M and c, and their simplification
to reduced form.
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3.2 General Metrics for Subsets & Linear Combinations

While the single-deletion case is often the most important and sufficient, some data sets contains points that

are jointly influential, but individually uninfluential. An example is given in Figure 1, which contains data

regarding average attitudes towards inequality based on the country’s the Gini coefficient.1

Figure 1: Data regarding attitudes towards inequality, given a country’s Gini coefficient (Jacoby, 2005).

Evidently, removing either of the outliers individually (Slovakia or the Czech Republic) will only mini-

mally impact the parameter estimates, and least squares will still yield a fitted line similar to the “all cases”

line indicated in Figure 1. On the other hand, removing both Slovakia and the Czech Republic yields the

“outliers excluded” fit indicated by the dotted red line, which appears to be a better fit to the majority of

the data. Thus, it is at times important to be able to characterize distance between estimated parameter

values when a subset of the observations are deleted.

To obtain such a metric, we return to the general formulation using the empirical distance function. We

consider I to be the index set {i1, . . . , im} indicating the cases that are deleted; then, β̂(−I) represents, by

analogy to the single-deletion case, the estimated parameter values without the observations index by I.

Then, we define:

IFI ≡ β̂(−I) − β̂
1Figure from Jacoby, William G. “Lecture 11: Outliers and Influential Data” of Regression III: Advanced Methods

(http://polisci.msu.edu/jacoby/icpsr/regress3/).
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and the distance function:

DI ≡ DI(X
TX, ps2) =

(IFI)
T (XTX)(IFI)

ps2

In order to derive simpler and more intuitive versions of the formula, we utilize a result by Bingham (1977),

who showed that:

IFI = −(XTX)−1XT
I (I−HI)

−1eI

where each of the XI ,HI are matrices consisting only of the rows/columns corresponding to the indexed

observations I to be deleted. Using this formula, we have:

DI =
[eTI (I−HI)

−1XI(X
TX)−1](XTX)[(XTX)−1XT

I (I−HI)
−1eI ]

ps2

=
eTI (I−HI)

−1HI(I−HI)
−1eI

ps2

Since HI is a symmetric m×m matrix, we can diagonalize the matrix with the spectral decomposition: that

is, there exists an m×m diagonal matrix ΛI = diag(λi) and orthogonal matrix ΓI such that HI = ΓTI ΛIΓI ,

where λi are the eigenvalues of the matrix HI . If all eigenvalues λi < 1, then we have:

DI =
eTI (ΓTI ΓI − ΓTI ΛIΓI)

−1(ΓTI ΛIΓI)(Γ
T
I ΓI − ΓTI ΛIΓI)

−1eI
ps2

=
(ΓIeI)

T (I−ΛI)
−1ΛI(I−ΛI)

−1(ΓIeI)

ps2

=
gT (I−ΛI)

−1ΛI(I−ΛI)
−1g

ps2

=

∑m
i=1 g

2
i

λi

(1−λi)2

ps2

where g = ΓIeI = (g1, . . . , gm). Then, each gi is a linear combination of the elements of eI , or the residuals,

with:

var(g) = var(ΓIeI)

= ΓTI [σ2(I−H)I)]ΓI

= σ2ΓΓT (I−ΛI)ΓΓT

= σ2(I−ΛI)

Thus, the gi are uncorrelated with var(gi) = σ2(1 − λii). Moreover, we can now standardize the gi and

define:

r̃i =
gi

s
√

1− λi
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which leads us to the simplified form of the distance metric for the deletion of a subset as:

DI =

m∑
i=1

r̃2i
p

λi
1− λi

In this form, the resemblance of this distance metric to the one derived for the single-deletion case is clear:

we place ri by r̃i, and the leverage values hii by the eigenvalues of the hat matrix computed using the

subset of the data, λi. Moreover, we must sum over the m orthogonal directions in this metric since we are

considering a deletion of m observations, whereas in the single-deletion case we simply had m = 1.

Finally, the empirical influence function metric can be extended to analyze changes in q linearly indepen-

dent combinations of parameter elements βi due to the removal of a subset of data. A quintessential example

of such a case is where we are interested in a subset of the parameters rather than the entire parameter

vector. Thus, consider ψ̂ = Lβ̂, where L is a q × p matrix of rank q. Then, the distance DI(ψ) between the

full-data estimate ψ̂ and the estimate with subset I removed ψ̂(−I) is:

DI(ψ) =
(ψ̂ − ψ̂(−I))

T [L(XTX)−1LT ]−1(ψ̂ − ψ̂(−I))

qs2

which is equivalent to the general form DI(M, c) with the matrix and scale factor chosen such that c = qs2

and M = LT [L(XTX)−1LT ]−1L:

DI(ψ) =
(IFI)

TLT [L(XTX)−1LT ]−1L(IFI)

qs2

=
eTI (I−HI)

−1XI(X
TX)−1M(XTX)−1XT

I (I−HI)
−1eI

qs2

again employing the formula by Bingham (1977). While this expression is not ripe for simplification in the

general case, a reduction is possible in the special case in which we are interested in a subset of β. Suppose

we are interested in the last q components of β; consequently, partition X = (X1 : X2) such that X1 consist

of the first p− q columns and X2 consists of the last q columns. Then, we have L = (0q×(p−q) : Iq×q). Thus,

we have:

(XTX)−1M(XTX)−1 = (XTX)−1 −

(XT
1 X1)−1 0

0 0


which can be used to simplify the above expression for DI(ψ) as:

DI(ψ) =
eTI (I−HI)

−1(HI −UI)(I−HI)
−1eI

qs2

=
ps2DI − eTI (I−HI)

−1UI(I−HI)
−1eI

qs2
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where U = X1(XT
1 X1)−1XT

1 . Thus, in the single-deletion case in which we are interested in a subset of the

parameters β, we have eI = ei and:

Di(ψ) =
r2i
q

hii − uii
1− hii

This expression also resembles the formula for the simplified Cook’s distance for the entire parameter β in

the single-deletion case, except we are now scaling by the number of parameter elements of interest, q, and

correcting the leverage term hii by the submatrix of the projection corresponding to the parameters not

under investigation, uii.

4 Extending to Generalized Linear Models

While the particular methods developed and reviewed in this paper are applicable only to linear models, the

conceptual framework underlying the diagnostics can be extended to generalized linear models. The analysis

of influential observations in diagnosing model fit and issues in the data is again based on a combination of

residuals and single case deletions. One point of difference in generalized linear models, as noted by Pregibon

(1981), is that there do not exist natural, uniquely defined residuals; they can be defined on several scales and

in varying manners. The two most often-utilized residuals are the components of the Pearson chi-squared

statistic and the deviance residuals (D(y, µ̂) =
∑
i d

2
i ).

Just as Cook’s distance and empirical influence function were metrics based on the “distance” traveled by

the estimated effect parameters β̂ when a parameter was deleted β̂(−i), generalized linear model diagnostics

seek to quantify this distance for the fitted parameters. Pregibon (1981) exploits the weight matrix W,

which for canonical link functions is equivalent to a diagonal matrix consisting of the dispersion parameter

functions a(φ). In turn, these a(φ) = wi generally, where wi is the weight given to a particular observation

and is often related to the number of counts for the observation in grouped cases, yielding the equations:

n∑
i=1

wi(yi − µi)xij = 0

Pregibon’s “one-step approximation” utilizes the fact that wi = 1 for ungrouped data, which is often the

case with quantitative or many-category predictors. Iteratively solving for the β̂(i) with wi ∈ [0, 1] for the ith

observation and wj = 1 for j 6= i, we can explore how this estimate varies with w; that is, analyze ∂
∂w β̂(i)(w).

This provides a measure of how the estimate changes when we place less weight on the ith observation.

In conclusion, such measures - which sometimes technically or computationally more involved due to

the greater number of moving parts of generalized linear models - are based on the same fundamental idea

as Cook’s distance and empirical influence functions for linear models: diagnosing potentially problematic

points in the data, or influential observations, by comparison of fitted estimates when less (or no) weight

is placed on a particular observation. In this sense, the results and methods of this paper are conceptual

forebears to diagnostics for generalized linear models, and can be extended accordingly.
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